An intermittent nonlinear map generating subdiffusion is investigated. Computer simulations show that the generalized diffusion coefficient of this map has a fractal, discontinuous dependence on control parameters. An amended continuous time random-walk theory well approximates the coarse behavior of this quantity in terms of a continuous function. This theory also reproduces a full suppression of the strength of diffusion, which occurs at the dynamical transition from normal to anomalous diffusion. Similarly, the probability density function of this map exhibits a nontrivial fine structure while its coarse functional form is governed by a time fractional diffusion equation. A more detailed understanding of the irregular structure of the generalized diffusion coefficient is provided by an anomalous Taylor-Green-Kubo formula establishing a relation to de Rham-type fractal functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.75.036213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!