Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Beta-arrestins are pleiotropic molecules that mediate signal desensitization, G-protein-independent signaling, scaffolding of signaling molecules, and chemotaxis. Protease-activated receptor-2 (PAR-2), a Galpha(q/11)-coupled receptor, which has been proposed as a therapeutic target for inflammation and cancer, requires the scaffolding function of beta-arrestins for chemotaxis. We hypothesized that PAR-2 can trigger specific responses by differential activation of two pathways, one through classic Galpha(q)/Ca(2+) signaling and one through beta-arrestins, and we proposed that the latter involves scaffolding of proteins involved in cell migration and actin assembly. Here we demonstrate the following. (a) PAR-2 promotes beta-arrestin-dependent dephosphorylation and activation of the actin filament-severing protein (cofilin) independently of Galpha(q)/Ca(2+) signaling. (b) PAR-2-evoked cofilin dephosphorylation requires both the activity of a recently identified cofilin-specific phosphatase (chronophin) and inhibition of LIM kinase (LIMK) activity. (c) Beta-arrestins can interact with cofilin, LIMK, and chronophin and colocalize with them in membrane protrusions, suggesting that beta-arrestins may spatially regulate their activities. These findings identify cofilin as a novel target of beta-arrestin-dependent scaffolding and suggest that many PAR-2-induced processes may be independent of Galpha(q/11) protein coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M701391200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!