Hitherto accredited prion tests use the PK resistance of PrP(Sc), the pathogenic isoform of the prion protein, as a marker for the disease. Because of variations in the amount of disease-related aggregated PrP, which is not PK-resistant, these prion tests offer only limited sensitivity. Therefore, a prion detection method that does not rely on PK digestion would allow for the detection of both PK-resistant as well as PK-sensitive PrP(Sc). Furthermore, single particle counting is more sensitive than methods measuring an integrated signal. Our new test system is based on dual-colour fluorescence correlation spectroscopy (FCS). This method quantifies the number of protein aggregates that have been simultaneously labelled with two different antibodies using dual-colour fluorescence intensity distribution analysis (2D-FIDA). This only counts PrP aggregates, and not PrP monomers. To increase the sensitivity, PrP(Sc) was concentrated in a two-dimensional space by immobilizing it so that the antibodies could be captured on the surface of the slide (surface-FIDA). When the surface was systematically scanned, even single prion particles were detected. Using this new technique, the sensitivity to identify samples from scrapie-infected hamster as well as BSE-infected cattle can be dramatically increased in comparison with identification using FIDA in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2007.04.001DOI Listing

Publication Analysis

Top Keywords

single prion
8
prion particles
8
prion tests
8
dual-colour fluorescence
8
prion
6
counting single
4
particles bound
4
bound capture-antibody
4
capture-antibody surface
4
surface surface-fida
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!