Revealing characteristics of mixed consortia for azo dye decolorization: Lotka-Volterra model and game theory.

J Hazard Mater

Department of Chemical & Materials Engineering, National I-Lan University, I-Lan 260, Taiwan, ROC.

Published: October 2007

This study provides a novel explanation to put forward, in Lotka-Volterra competition model and game theory, interspecific competition in bioaugmentation using constructed mixed consortia for azo dye decolorization. As mixed cultures are regularly used in industrial dye-laden wastewater treatment, understanding species competition of mixed consortia is apparently of great importance to azo dye decolorization. In aerobic growth conditions, Escherichia coli DH5alpha owned a growth advantage to out-compete Pseudomonas luteola due to preferential growth rate of DH5alpha. However, in static decolorization conditions DH5alpha surrendered some proportion of its advantage (i.e., a decrease in its competitive power for metabolite stimulation) to enhance color removal of P. luteola for total coexistence. In aerobic growth, DH5alpha had its growth advantage to exclude P. luteola for dominance (i.e, conflict strategy) according to competitive exclusion principle. In static decolorization conditions, as the removal of a common dye threat was crucial to both species for survival, both species selected cooperation strategy through metabolite stimulation of DH5alpha to enhance effective decolorization of P. luteola for long-term sustainable management. This analysis of game theory clearly unlocked unsolved mysteries in previous studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2007.04.022DOI Listing

Publication Analysis

Top Keywords

mixed consortia
12
azo dye
12
dye decolorization
12
game theory
12
consortia azo
8
model game
8
aerobic growth
8
growth advantage
8
static decolorization
8
decolorization conditions
8

Similar Publications

Elevated emissions of flue gases deteriorate the quality of air, impacting both terrestrial and aquatic ecosystems through their contribution to acid rain and eutrophication. This study examines the bio-mitigation process in a packed bed reactor and its capacity to concurrently decrease the environmental consequences of industrial flue gases (CO, NO, and SO) and wastewater by employing mixed bacterial consortia. The highest biomass productivity achieved during the growth phase was 0.

View Article and Find Full Text PDF

Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review.

Sci Total Environ

January 2025

Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar. Electronic address:

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…).

View Article and Find Full Text PDF

Assembly and Quantification of Co-Cultures Combining Heterotrophic Yeast with Phototrophic Sugar-Secreting Cyanobacteria.

J Vis Exp

December 2024

Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf; Department of Biochemistry and Molecular Biology, Michigan State University.

With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.

View Article and Find Full Text PDF

Synergistic transformation of Cr(VI) in lubricant degradation by bacterial consortium.

World J Microbiol Biotechnol

January 2025

Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.

In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus.

View Article and Find Full Text PDF

Background And Aims: Early life factors have been suggested to be associated with later cardiometabolic risk in children, adolescents and adults. Our study aimed to investigate the associations between early life factors and metabolic syndrome (MetS) in children and adolescents.

Methods And Results: Our analysis sample comprised of 8852 children aged 2-9 years at baseline that participated in up to three examination waves of the pan-European IDEFICS/I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!