We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2007.02.010 | DOI Listing |
Spine Deform
January 2025
Jackie and Gene Autry Children's Orthopedic Center, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS69, Los Angeles, CA, 90027, USA.
Purpose: Determine if Sacral Alar-Iliac (SAI) screw diameter is associated with pelvic fixation failure in pediatric patients with neuromuscular scoliosis (NMS) treated with posterior spinal fusion (PSF).
Methods: NMS patients from a single institution who underwent PSF with bilateral SAI screw fixation from 2010 to 2021 were retrospectively reviewed. Clinical parameters, SAI screw sizes, and radiographic outcomes were analyzed.
Eur Radiol Exp
January 2025
IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
Background: Minimizing radiation exposure is crucial in monitoring adolescent idiopathic scoliosis (AIS). Generative adversarial networks (GANs) have emerged as valuable tools being able to generate high-quality synthetic images. This study explores the use of GANs to generate synthetic sagittal radiographs from coronal views in AIS patients.
View Article and Find Full Text PDFEur Spine J
January 2025
Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
Objective: Spinopelvic sagittal balance ensures efficient posture and minimizes energy expenditure by aligning the spine, pelvis, and lower extremities. Deviations can cause clinical issues like back pain and functional limitations. Key radiographic parameters, including pelvic tilt (PT), pelvic incidence (PI), sacral slope (SS), and lumbar lordosis (LL), are essential for evaluating spinal pathologies and planning surgeries.
View Article and Find Full Text PDFJ Arthroplasty
January 2025
Vanderbilt University Medical Center, Department of Orthopaedic Surgery.
Introduction: Novel methods for annotating antero-posterior (AP) pelvis radiographs and fluoroscopic images with deep-learning models have recently been developed. However, their clinical use has been limited. Therefore, the purpose of this study was to develop a deep learning model that could annotate clinically relevant pelvic landmarks on both radiographic and fluoroscopic images and automate total hip arthroplasty (THA)-relevant measurements.
View Article and Find Full Text PDFJ Bone Joint Surg Am
January 2025
Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China.
Background: Previous studies have reported normative data for sagittal spinal alignment in asymptomatic adults. The sagittal spinal alignment change in European children was recently reported. However, there is a lack of studies on the normative reference values of sagittal spinal and pelvic alignment and how these parameters change at different growth stages in Chinese children.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!