A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. | LitMetric

Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.

J Hazard Mater

Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil.

Published: October 2007

Effluents from coal mining operations are not only highly acid but also depict elevated concentrations of metals which may contaminate the environment. Due to the polybasic characteristic of chitosan, this biopolymer is capable of both neutralizing and removing iron, aluminum and copper ions from such effluents. The present study aimed at evaluating the use of chitosan microspheres for their importance in continuous systems. The microspheres were prepared by the phase inversion method. Their average diameter and morphology were determined. Water samples from decantation pool (DP) and acidic mine drainage (AMD) effluents were treated using different amounts of microspheres. The pH and concentration of Fe, Al and Cu ions were evaluated both before and after treatment of effluent samples. The results revealed that the microspheres were capable of increasing the pH of DP and AMD samples from 2.34 and 2.58, respectively, to 6.20, i.e., close to neutrality. The treatment also resulted in full removal of the metals investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2007.04.012DOI Listing

Publication Analysis

Top Keywords

coal mining
8
chitosan microspheres
8
microspheres
5
reduction acidity
4
acidity removal
4
removal metal
4
metal ions
4
ions coal
4
effluents
4
mining effluents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!