Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The glutamatergic subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical brain nuclei important for voluntary movement and the site of dysfunction in Parkinson's disease. The rate and pattern of STN activity is precisely regulated by the reciprocally connected GABAergic external globus pallidus (GP(e)) and glutamatergic afferents from the cortex. Subthalamic neurons possess intrinsic membrane properties that underlie the autonomous generation of action potentials and complex forms of synaptic integration. Thus, GABA acting at GABA(A) and/or GABA(B) receptors can inhibit/reset autonomous activity by deactivating postsynaptic voltage-dependent Na(+) (Na(v)) channels and generate sufficient hyperpolarization for rebound burst firing, through the de-inactivation of postsynaptic voltage-dependent Ca(2+) (Ca(v)) and Na(v) channels. Feedback inhibition from the GP(e) can therefore paradoxically and transiently increase the efficacy of subsequent excitatory synaptic inputs, and thus enhance the response of the STN to rhythmic input from the cortex. Evidence is also provided that dopamine acting at post- and presynaptic receptors in the STN may, through actions on the integrative properties of STN neurons and activity-dependent synaptic plasticity, be critical for the patterning of STN neuronal activity in vivo. Taken together, these discoveries may be relevant for the emergence of correlated, rhythmic, burst firing in the dopamine-depleted STN of patients with PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0079-6123(06)60010-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!