Foxtail millet is a gramineous crop with low water requirement. Despite its high water use efficiency, less attention has been paid to the molecular genetics of foxtail millet. This article reports the construction of subtracted cDNA libraries from foxtail millet seedlings under dehydration stress and the expression profile analysis of 1947 UniESTs from the subtracted cDNA libraries by a cDNA microarray. The results showed that 95 and 57 ESTs were upregulated by dehydration stress, respectively, in roots and shoots of seedlings and that 10 and 27 ESTs were downregulated, respectively, in roots and shoots. The expression profile analysis showed that genes induced in foxtail millet roots were different from those in shoots during dehydration stress and that the early response to dehydration stress in foxtail millet roots was the activation of the glycolysis metabolism. Moreover, protein degradation pathway may also play a pivotal role in drought-tolerant responses of foxtail millet. Finally, Northern blot analysis validated well the cDNA microarray data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2007.03.016 | DOI Listing |
Light is essential for photosynthesis; however, excess light can increase the accumulation of photoinhibitory reactive oxygen species that reduce photosynthetic efficiency. Plants have evolved photoprotective non-photochemical quenching (NPQ) pathways to dissipate excess light energy. In tobacco and soybean (C plants), overexpression of three NPQ genes, e ( V DE), ( P sbS), and ( Z EP), hereafter VPZ, resulted in faster NPQ induction and relaxation kinetics, and increased crop yields in field conditions.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.
Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.
Sci Rep
January 2025
Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.
Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030000, China.
A water-soluble polysaccharide from foxtail millet (FM-D1) was isolated and purified through gradient ethanol precipitation and column chromatography. Size-Exclusion Chromatography-Multi-Angle Light Scattering-Refractive Index (SEC-MALLS-RI) and high-performance anion-exchange chromatography (HPAEC) analyses revealed that FM-D1 constitutes a highly purified neutral polysaccharide exclusively composed of glucose as the sugar unit, with a molecular weight of 14.823 kDa.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agriculture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, China.
QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!