Our objective was to evaluate high-intensity focused ultrasound (HIFU) for minimizing blood loss during surgery by hemodynamically isolating large portions of solid organs before their resection. A high-power HIFU device (in situ intensity of 9000 W/cm(2), frequency of 3.3 MHz) was used to produce a wall of cautery for sealing of blood vessels along the resection line in surgically exposed solid organs (liver lobes, spleen and kidneys) of eight adult pigs. Following HIFU application, the distal portion of the organ was excised using a scalpel. If any blood vessels were still bleeding, additional HIFU application was used to stop the bleeding. The resection was achieved in 6.0 +/- 1.5 min (liver), 3.6 +/- 1.1 min (spleen) and 2.8 +/- 0.6 min (kidneys) of HIFU treatment time, with no occurrence of bleeding for up to 4 h (until sacrifice). The coagulated region at the resection line had average width of 3 cm and extended through the whole thickness of the organ (up to 4 cm). Blood vessels of up to 1 cm in size were occluded. This method holds promise for future clinical applications in resection of solid tumors and hemorrhage control from high-grade organ injuries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701626 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2007.02.010 | DOI Listing |
Curr Protoc
January 2025
Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
Competitive fitness is a fundamental concept in evolutionary biology that captures the ability of organisms to survive, reproduce, and compete for resources in their environment. Competitive fitness is typically assessed in the lab by growing two or more competitors together and measuring the frequency of each at multiple time points. Traditional microbial competitive fitness assays are labor intensive and involve plating on solid medium and counting colonies.
View Article and Find Full Text PDFUnlabelled: 20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have been poorly investigated.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
Background: Bacteria in physiological environments can generate mineralizing biofilms, which are associated with diseases like periodontitis or kidney stones. Modelling complex environments presents a challenge for the study of mineralization in biofilms. Here, we developed an experimental setup which could be applied to study the fundamental principles behind biofilm mineralization on rigid substrates, using a model organism and in a tailored bioreactor that mimics a humid environment.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland.
Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, Bilkent University, 06800, Ankara, Turkey.
Patterns are encountered and employed in nature, such as in the communication or growth of organisms and sophisticated behaviors such as camouflage. Artificial patterns are not rare, either. They can also be used in sensing, recording information, and manipulating material properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!