Reversal of haloperidol-induced tardive vacuous chewing movements and supersensitive somatodendritic serotonergic response by buspirone in rats.

Pharmacol Biochem Behav

Department of Biochemistry, Neurochemistry and Biochemical Neuropharmacology Research laboratory, University of Karachi, Karachi 75270 Pakistan.

Published: May 2007

Tardive dyskinesia (TD), a syndrome of involuntary hyperkinesias in the orofacial region that develops in patients chronically treated with neuroleptic agents is a major limitation of the therapy. Rats chronically treated with haloperidol exhibit vacuous chewing movements (VCMs) with the twitching of facial musculature and tongue protrusion. The syndrome is widely used as an animal model of TD. Evidence suggests a role of 5-hydroxytryptamine (5-HT; serotonin)-1A receptors in the pathogenesis and treatment of TD because repeated administration of haloperidol resulted in an increase in the effectiveness of 5-HT-1A receptors while drugs with agonist activity at 5-HT-1A receptors could attenuate haloperidol-induced VCMs. The present study was designed to test the hypothesis that a decrease in the responsiveness of somatodendritic 5-HT-1A receptors by the coadministration of buspirone could reverse the induction of VCMs and supersensitivity at 5-HT-1A receptors by haloperidol. Rats treated with haloperidol at a dose of 1 mg/kg twice a day for 2 weeks displayed VCMs with twitching of facial musculature that increased in a time dependent manner as the treatment continued to 5 weeks. Coadministration of buspirone attenuated haloperidol-induced VCMs after 2 weeks and completely prevented it after 5 weeks. The intensity of 8-hydroxy-2-di (n-propylamino) tetralin (8-OH-DPAT)-induced locomotion was greater in saline+haloperidol injected animals but not in buspirone+haloperidol injected animals. 8-OH-DPAT-induced decreases of 5-HT metabolism were greater in saline+haloperidol injected animals but not in buspirone+haloperidol injected animals. It is suggested that an impaired somatodendritic 5-HT-1A receptor dependent response is a major contributing factor in the pathophysiology of TD and a normalization of the somatodendritic response by drugs may help extending therapeutics in schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2007.04.007DOI Listing

Publication Analysis

Top Keywords

5-ht-1a receptors
16
injected animals
16
vacuous chewing
8
chewing movements
8
chronically treated
8
treated haloperidol
8
vcms twitching
8
twitching facial
8
facial musculature
8
haloperidol-induced vcms
8

Similar Publications

Long-Term 5-HT Receptor Agonist NLX-112 Treatment Improves Functional Recovery After Spinal Cord Injury.

Int J Mol Sci

December 2024

Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Spinal cord injury (SCI) results in functional deficits below the injured spinal level. The descending serotonergic system in the spinal cord is critically involved in the control of motor and autonomic functions. Specifically, SCI damages the projections of serotonergic fibers, which leads to reduced serotonin inputs and increased amounts of spinal serotonergic receptors.

View Article and Find Full Text PDF

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

Tandospirone prevents anesthetic-induced respiratory depression through 5-HT receptor activation in rats.

Sci Rep

January 2025

Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing, 100850, China.

Respiratory depression is a side effect of anesthetics. Treatment with specific antagonists or respiratory stimulants can reverse respiratory depression caused by anesthetics; however, they also interfere with the sedative effects of anesthetics. Previous studies have suggested that tandospirone may ameliorate respiratory depression without affecting the sedative effects of anesthetics.

View Article and Find Full Text PDF

Cyto-, gene, and multireceptor architecture of the early postnatal mouse hippocampal complex.

Prog Neurobiol

December 2024

Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Dusseldorf 40225, Germany.

Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes.

View Article and Find Full Text PDF

Background: Although some studies suggest that sleep deprivation may affect ejaculation regulation, related research is limited, and the mechanisms remain unclear.

Aim: This study aimed to explore whether sleep deprivation influences ejaculation regulation through amyloid-beta and to investigate its potential mechanisms.

Materials And Methods: Normal ejaculating rats were randomly distributed into three separate groups for the study, and treated with sleep deprivation combined with saline gavage, sleep deprivation combined with sodium butyrate gavage, and control with saline gavage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!