A novel human dual-specific protein phosphatase (DSP), designated DUSP27, is here described. The DUSP27 gene contains three exons, rather than the predicted 4-14 exons, and encodes a 220 amino acid protein. DUSP27 is structurally similar to other small DSPs, like VHR and DUSP13. The location of DUSP27 on chromosome 10q22, 50kb upstream of DUSP13, suggests that these two genes arose by gene duplication. DUSP27 is an active enzyme, and its kinetic parameters and were determined. DUSP27 is a cytosolic enzyme, expressed in skeletal muscle, liver and adipose tissue, suggesting its possible role in energy metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2007.04.059 | DOI Listing |
Front Chem Biol
August 2024
Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States.
Introduction: Dual specific phosphatases (DUSPs) are mitogen-activated protein kinase (MAPK) regulators, which also serve as drug targets for treating various vascular diseases. Previously, we have presented mechanistic characterizations of DUSP5 and its interaction with pERK, proposing a dual active site.
Methods: Herein, we characterize the interactions between the DUSP5 phosphatase domain and the pT-E-pY activation loop of ERK2, with specific active site assignments.
Anal Chem
December 2024
School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.
View Article and Find Full Text PDFEMBO Rep
December 2024
Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China.
Viral infection activates the transcription factors IRF3 and NF-κB, which induce type I interferon (IFN) and antiviral innate immune responses. Here, we identify dual-specific tyrosine phosphorylation-regulated kinase 4 (DYRK4) as an important regulator of virus-triggered IFN-β induction and antiviral innate immunity. Overexpression of DYRK4 enhances virus-triggered activation of IRF3 and type I IFN induction, whereas knockdown or knockout of DYRK4 impairs virus-induced activation of IRF3 and NF-κB.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
Positron emission tomography (PET) is a promising modality for early diagnosis, accurate detection, and staging of hepatocellular carcinoma (HCC). Hereby, a dual-specific probe targeting Glypican-3 (GPC3) and prostate-specific membrane antigen (PSMA) was evaluated for HCC PET imaging. The probe was prepared by conjugating TJ12P2, a GPC3-targeting peptide previously reported by our group, to a highly potent PSMA inhibitor via a polyethylene glycol linker and further tethered to the 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator.
View Article and Find Full Text PDFHemasphere
December 2024
Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna Austria.
The transcription factors STAT3, STAT5A, and STAT5B steer hematopoiesis and immunity, but their enhanced expression and activation promote acute myeloid leukemia (AML) or natural killer/T cell lymphoma (NKCL). Current therapeutic strategies focus on blocking upstream tyrosine kinases to inhibit STAT3/5, but these kinase blockers are not selective against STAT3/5 activation and frequent resistance causes relapse, emphasizing the need for targeted drugs. We evaluated the efficacy of JPX-0700 and JPX-0750 as dual STAT3/5 binding inhibitors promoting protein degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!