Background: The ability for serially homologous structures to acquire a separate identity has been primarily investigated for structures dependent on Hox gene input but is still incompletely understood in other systems. The fore and hindwings of butterflies are serially homologous structures as are the serially homologous eyespots that can decorate each of these wings. Eyespots can vary in number between fore and hindwings of the same individual and mutations of large effect can control the total number of eyespots that each of the wings displays. Here we investigate the genetics of a new spontaneous color pattern mutation, Missing, that alters eyespot number in the nymphalid butterfly, Bicyclus anynana. We further test the interaction of Missing with a previously described mutation, Spotty, describe the developmental stage affected by Missing, and test whether Missing is a mutant variant of the gene Distal-less via a linkage association study.

Results: Missing removes or greatly reduces the size of two of the hindwing eyespots from the row of seven eyespots, with no detectable effect on the rest of the wing pattern. Offspring carrying a single Missing allele display intermediate sized eyespots at these positions. Spotty has the opposite effect of Missing, i.e., it introduces two extra eyespots in homologous wing positions to those affected by Missing, but on the forewing. When Missing is combined with Spotty the size of the two forewing eyespots decreases but the size of the hindwing spots stays the same, suggesting that these two mutations have a combined effect on the forewing such that Missing reduces eyespot size when in the presence of a Spotty mutant allele, but that Spotty has no effect on the hindwing. Missing prevents the complete differentiation of two of the eyespot foci on the hindwing. We found no evidence for any linkage between the Distal-less and Missing genes.

Conclusion: The spontaneous mutation Missing controls the differentiation of the signaling centers of a subset of the serial homologous eyespots present on both the fore and the hindwing in a dose-dependent fashion. The effect of Missing on the forewing, however, is only observed when the mutation Spotty introduces additional eyespots on this wing. Spotty, on the other hand, controls the differentiation of eyespot centers only on the forewing. Spotty, unlike Missing, may be under Ubx gene regulation, since it affects a subset of eyespots on only one of the serially homologous wings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1878498PMC
http://dx.doi.org/10.1186/1471-2156-8-22DOI Listing

Publication Analysis

Top Keywords

serially homologous
20
missing
15
fore hindwings
12
eyespots
11
color pattern
8
homologous structures
8
homologous eyespots
8
mutation missing
8
spotty
8
mutation spotty
8

Similar Publications

The anatomical innovation of sound-producing organs, which gives rise to a wide variety of sound signals, is one of the most fundamental factors leading to the explosive speciation of modern birds. Despite being a key clue to resolving the homology of sound-controlling muscles among birds, only few studies have explored the embryonic development of syringeal muscles. Using serial histological sections and immunohistochemistry, we described the three-dimensional anatomy and development of the cartilage, muscle, and innervation pattern of the tracheobronchi in three avian species: domestic fowls, cockatiels, and zebra finches.

View Article and Find Full Text PDF

Infectious bronchitis virus (IBV) has a variety of serotypes that cause many problems in the poultry industry. Two H120 and H120-D274 live vaccines were evaluated against strain IS/1494/06 (variant 2) IBV challenge. The study aimed to determine whether it was possible to achieve success in controlling disease symptoms and pathological lesions and reducing virus shedding by combining two types of vaccines against different severities of poultry IBV.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed data from 450 patients, finding that 310 were classified as ultra-low risk (ULR) based on their rapid clinical response and low MAP scores, leading to significantly better outcomes.
  • * Patients in the ULR group had higher response rates at day 28 and lower non-relapse mortality at six months, suggesting that careful monitoring can guide safer, more effective GVHD treatment strategies.
View Article and Find Full Text PDF

Mechanistic basis of atypical TERT promoter mutations.

Nat Commun

November 2024

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Non-coding mutations in the TERT promoter (TERTp), typically at one of two bases -124 and -146 bp upstream of the start codon, are among the most prevalent driver mutations in human cancer. Several additional recurrent TERTp mutations have been reported but their functions and origins remain largely unexplained. Here, we show that atypical TERTp mutations arise secondary to canonical TERTp mutations in a two-step process.

View Article and Find Full Text PDF

Metabolic reprogramming from oxidative respiration to glycolysis is generally considered to be advantageous for tumor initiation and progression. However, we found that breast cancer cells forced to perform glycolysis acquired a vulnerability to PARP inhibitors. Small-molecule inhibition of mitochondrial respiration-using glyceollin I, metformin, or phenformin-induced overproduction of the oncometabolite lactate, which acidified the extracellular milieu and repressed the expression of homologous recombination (HR)-associated DNA repair genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!