In yeast, functions of the endoplasmic reticulum (ER) depend on the Golgi apparatus Ca2+ pool, which is replenished by the medial-Golgi ion pump Pmr1p. Here, to dissect the role of the Golgi Ca2+ pool in protein folding and elimination of unfolded proteins in the ER, the manifestations of the pmr1 mutation in yeast Hansenula polymorpha were studied. The PMR1 gene was disrupted in a H. polymorpha diploid strain. Haploid segregants of this diploid bearing the disruption allele were viable, though they showed a severe growth defect on synthetic medium and rapidly died during storage at low temperature. Disruption of H. polymorpha PMR1 led to defects of the Golgi-hosted protein glycosylation and vacuolar protein sorting. This mutation increased the survival rate of H. polymorpha cells upon treatment with the proapoptotic drug amiodarone. Unlike Saccharomyces cerevisiae, the H. polymorpha pmr1 mutant was not hypersensitive to chemicals that induce the accumulation of unfolded proteins in the ER, indicating that the elimination of unfolded proteins from the ER was not essentially affected. At the same time, the pmr1 mutation improved the secretion of human urokinase and decreased its intracellular aggregation, indicating an influence of the mutation on the protein folding in the ER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1567-1364.2007.00247.x | DOI Listing |
Biotechniques
October 2017
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences.
We developed a novel approach to improve detection of membrane-associated proteins in yeast cell lysates by immunoblotting. Our method consists of a simple enrichment procedure using sedimentation to remove soluble proteins and the use of an alternative electrophoresis sample buffer, which allows for protein solubilization without heating. The efficacy of this approach was demonstrated for membrane proteins in (Pho87, Gas1, and Pmr1) and (Gas1).
View Article and Find Full Text PDFPLoS One
June 2016
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
Processes taking place in the secretory organelles require Ca2+ and Mn2+, which in yeast are supplied by the Pmr1 ion pump. Here we observed that in the yeast Hansenula polymorpha Ca2+ deficiency in the secretory pathway caused by Pmr1 inactivation is exacerbated by (i) the ret1-27 mutation affecting COPI-mediated vesicular transport, (ii) inactivation of the vacuolar Ca2+ ATPase Pmc1 and (iii) inactivation of Vps35, which is a component of the retromer complex responsible for protein transport between the vacuole and secretory organelles. The ret1-27 mutation also exerted phenotypes indicating alterations in transport between the vacuole and secretory organelles.
View Article and Find Full Text PDFJ Biol Chem
November 2010
Department of Biochemistry and Molecular Biology, Institute of Biomedical Technologies, Nitrogen Metabolism Group, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Canarias, Spain.
Disruption of HpURE2 resulted in a low expression of genes encoding nitrate-assimilatory proteins; sensitivity to Li(+), Na(+), and Cd(2+); no induction of ENA1; low levels of the GATA-type transcription factor Gat1; and low intracellular Ca(2+) levels. Gat1 levels were also very low in a Δcnb1 mutant lacking the regulatory subunit of calcineurin. The strain Δure2 was very sensitive to the calcineurin inhibitor FK506 and displayed several phenotypes reminiscent of Δcnb1.
View Article and Find Full Text PDFFEMS Yeast Res
October 2007
Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia.
In yeast, functions of the endoplasmic reticulum (ER) depend on the Golgi apparatus Ca2+ pool, which is replenished by the medial-Golgi ion pump Pmr1p. Here, to dissect the role of the Golgi Ca2+ pool in protein folding and elimination of unfolded proteins in the ER, the manifestations of the pmr1 mutation in yeast Hansenula polymorpha were studied. The PMR1 gene was disrupted in a H.
View Article and Find Full Text PDFYeast
June 2006
Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE 68588, USA.
A gene homologous to Saccharomyces cerevisiae PMR1 has been cloned in the methylotrophic yeast Pichia pastoris. The entire P. pastoris PMR1 gene (PpPMR1) codes a protein of 924 amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!