The first step in the biosynthesis of pterins in bacteria and plants is the conversion of GTP to 7,8-dihydro-d-neopterin triphosphate catalyzed by GTP cyclohydrolase I (GTPCHI). Although GTP has been shown to be a precursor of pterins in archaea, homologues of GTPCHI have not been identified in most archaeal genomes. Here we report the identification of a new GTP cyclohydrolase that converts GTP to 7,8-dihydro-d-neopterin 2',3'-cyclic phosphate, the first intermediate in methanopterin biosynthesis in methanogenic archaea. The enzyme from Methanocaldococcus jannaschii is designated MptA to indicate that it catalyzes the first step in the biosynthesis of methanopterin. MptA is the archetype of a new class of GTP cyclohydrolases that catalyzes a series of reactions most similar to that seen with GTPCHI but unique in that the cyclic phosphate is the product. MptA was found to require Fe2+ for activity. Mutation of conserved histidine residues H200N, H293N, and H295N, expected to be involved in Fe2+ binding, resulted in reduced enzymatic activity but no reduction in the amount of bound iron.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi700052aDOI Listing

Publication Analysis

Top Keywords

gtp cyclohydrolase
12
methanocaldococcus jannaschii
8
step biosynthesis
8
gtp 78-dihydro-d-neopterin
8
gtp
7
characterization fe2+-dependent
4
fe2+-dependent archaeal-specific
4
archaeal-specific gtp
4
mpta
4
cyclohydrolase mpta
4

Similar Publications

Cross-species RNAi therapy via AAV delivery alleviates neuropathic pain by targeting GCH1.

Neurotherapeutics

December 2024

Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Brain Research institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:

Tetrahydrobiopterin (BH4) expression is normally strictly controlled; however, its intracellular levels increase considerably following nerve damage. GTP cyclohydrolase I (GCH1) plays a crucial role in regulating BH4 concentration, with an upregulation observed in the dorsal root ganglion in cases of neuropathic pain. In this study, we aimed to develop and evaluate the clinical potential of an RNA interference-based adeno-associated virus (AAV) targeting GCH1 across various species to decrease BH4 levels and, consequently, alleviate neuropathic pain symptoms.

View Article and Find Full Text PDF

Neuropathic pain is a chronic pain condition that is primarily caused by underlying neurological damage and dysfunction. Recent studies have identified microRNAs (miRNAs) as a key factor in the treatment of neuropathic pain. To explore the effects of miR-133a-3p on neuroinflammation and neuropathic pain via GTP cyclohydrolase (GCH1), and its underlying mechanisms.

View Article and Find Full Text PDF

CTRP13 attenuates atherosclerosis by inhibiting endothelial cell ferroptosis via activating GCH1.

Int Immunopharmacol

December 2024

Harbin Medical University, Harbin 150001, PR China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin 150001, PR China. Electronic address:

C1q/TNF-related protein 13 (CTRP13) is a secreted adipokine that has been shown to play an important role in a variety of cardiovascular diseases. However, the effect of CTRP13 on ferroptosis of endothelial cells and its underlying mechanism remain unclear. In the present study, we analyzed the effects of CTRP13 on endothelial dysfunction in high-lipid-induced ApoE mice and ox-LDL-induced mouse aortic endothelial cells (MAECs).

View Article and Find Full Text PDF

Association of Amyotrophic Lateral Sclerosis and Dopa-responsive dystonia in a Tunisian patient.

Parkinsonism Relat Disord

January 2025

Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers Manouba, 2010, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, 1007, Tunis, Tunisia; Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers Manouba, 2010, Tunis, Tunisia.

Article Synopsis
  • - Dopa-responsive dystonia (DRD) is a genetic disorder characterized by symptoms similar to Parkinson's disease and dystonia, caused by changes in the GCH1 gene affecting dopamine production.
  • - This case report is unique as it connects childhood-onset DRD with amyotrophic lateral sclerosis (ALS), indicating a potential link between these two conditions.
  • - The findings suggest that the diverse genetic backgrounds in the North African population might play a role in the occurrence of multiple related disorders.
View Article and Find Full Text PDF

Tryptophan Metabolism in Obesity: The Indoleamine 2,3-Dioxygenase-1 Activity and Therapeutic Options.

Adv Exp Med Biol

September 2024

Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.

Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!