Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex.

Inorg Chem

School of Physics and the Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre (COSMIC), The University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, UK.

Published: June 2007

The dinuclear RuII arene complexes [{(eta6-arene)RuCl}2(mu-2,3-dpp)](PF6)2, arene=indan (1), benzene (2), p-cymene (3), or hexamethylbenzene (4) and 2,3-dpp=2,3-bis(2-pyridyl)pyrazine, have been synthesized and characterized. Upon irradiation with UVA light, complexes 1 and 2 readily underwent arene loss, while complexes 3 and 4 did not. The photochemistry of 1 was studied in detail. In the X-ray structure of [{(eta6-indan)RuCl}2(mu-2,3-dpp)](PF6)2 (1), 2,3-dpp bridges two RuII centers 6.8529(6) A apart. In water, aquation of 1 in the dark occurs with replacement of chloride with biexponential kinetics and decay constants of 100+/-1 min-1 and 580+/-11 min-1. This aquation was suppressed by 0.1 M NaCl. UV or visible irradiation of 1 in aqueous or methanolic solution led to arene loss. The fluorescence of the unbound arene is approximately 40 times greater than when it is complexed. Irradiation of 1 also had a significant effect on its interactions with DNA. The DNA binding of 1 is increased after irradiation. The non-irradiated form of 1 preferentially formed DNA adducts that only weakly blocked RNA polymerase, while irradiation of 1 transformed the adducts into stronger blocks for RNA polymerase. The efficiency of irradiated 1 to form DNA interstrand cross-links was slightly greater than that of cisplatin in both 10 mM NaClO4 and 0.1 M NaCl. In contrast, the interstrand cross-linking efficiency of non-irradiated 1 in 10 mM NaClO4 was relatively low. An intermediate amount of cross-linking was observed when the sample of DNA already modified by non-irradiated 1 was irradiated. DNA unwinding measurements supported the conclusion that both mono- and bifunctional adducts with DNA can form. These results show that photoactivation of dinuclear RuII arene complexes can simultaneously produce a highly reactive ruthenium species that can bind to DNA and a fluorescent marker (the free arene). Importantly, the mechanism of photoreactivity is also independent of oxygen. These complexes, therefore, have the potential to combine both photoinduced cell death and fluorescence imaging of the location and efficiency of the photoactivation process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic062111qDOI Listing

Publication Analysis

Top Keywords

dna
9
dna binding
8
photoactivation dinuclear
8
dinuclear ruii
8
ruii arene
8
arene complexes
8
arene loss
8
rna polymerase
8
arene
7
complexes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!