Rate coefficients of the reaction O(3P)+C2H5OH in the temperature range 782-1410 K were determined using a diaphragmless shock tube. O atoms were generated by photolysis of SO2 at 193 nm with an ArF excimer laser; their concentrations were monitored via atomic resonance absorption. Our data in the range 886-1410 K are new. Combined with previous measurements at low temperature, rate coefficients determined for the temperature range 297-1410 K are represented by the following equation: k(T)=(2.89+/-0.09)x10(-16)T1.62 exp[-(1210+/-90)/T] cm3 molecule(-1) s(-1); listed errors represent one standard deviation in fitting. Theoretical calculations at the CCSD(T)/6-311+G(3df, 2p)//B3LYP/6-311+G(3df) level predict potential energies of various reaction paths. Rate coefficients are predicted with the canonical variational transition state (CVT) theory with the small curvature tunneling correction (SCT) method. Reaction paths associated with trans and gauche conformations are both identified. Predicted total rate coefficients, 1.60 x 10(-22)T3.50 exp(16/T) cm3 molecule(-1) s(-1) for the range 300-3000 K, agree satisfactorily with experimental observations. The branching ratios of three accessible reaction channels forming CH3CHOH+OH (1a), CH2CH2OH+OH (1b), and CH3CH2O+OH (1c) are predicted to vary distinctively with temperature. Below 500 K, reaction 1a is the predominant path; the branching ratios of reactions 1b,c become approximately 40% and approximately 11%, respectively, at 2000 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp068977z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!