A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A mathematical model of the oar blade - water interaction in rowing. | LitMetric

A mathematical model of the oar blade - water interaction in rowing.

J Sports Sci

Division of Sport Sciences, Wynne Jones Centre, Newcastle upon Tyne, UK.

Published: July 2007

Our aim was to present a mathematical model of rowing and sculling that allowed for a comparison of oar blade designs. The relative movement between the oar blades and water during the drive phase of the stroke was modelled, and the lift and drag forces generated by this complex interaction were determined. The model was driven by the oar shaft angular velocity about the oarlock in the horizontal plane, and was shown to be valid against measured on-water mean steady-state shell velocity for both a heavyweight men's eight and a lightweight men's single scull. Measured lift and drag force coefficients previously presented by the authors were used as inputs to the model, whichs allowed for the influence of oar blade design on rowing performance to be determined. The commonly used Big Blade, which is curved, and it's flat equivalent were compared, and blade curvature was shown to generate a 1.14% improvement in mean boat velocity, or a 17.1-m lead over 1500 m. With races being won and lost by much smaller margins than this, blade curvature would appear to play a significant role in propulsion.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640410600951571DOI Listing

Publication Analysis

Top Keywords

oar blade
12
mathematical model
8
lift drag
8
blade curvature
8
blade
6
oar
5
model oar
4
blade water
4
water interaction
4
interaction rowing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!