A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extended query refinement for medical image retrieval. | LitMetric

The impact of image pattern recognition on accessing large databases of medical images has recently been explored, and content-based image retrieval (CBIR) in medical applications (IRMA) is researched. At the present, however, the impact of image retrieval on diagnosis is limited, and practical applications are scarce. One reason is the lack of suitable mechanisms for query refinement, in particular, the ability to (1) restore previous session states, (2) combine individual queries by Boolean operators, and (3) provide continuous-valued query refinement. This paper presents a powerful user interface for CBIR that provides all three mechanisms for extended query refinement. The various mechanisms of man-machine interaction during a retrieval session are grouped into four classes: (1) output modules, (2) parameter modules, (3) transaction modules, and (4) process modules, all of which are controlled by a detailed query logging. The query logging is linked to a relational database. Nested loops for interaction provide a maximum of flexibility within a minimum of complexity, as the entire data flow is still controlled within a single Web page. Our approach is implemented to support various modalities, orientations, and body regions using global features that model gray scale, texture, structure, and global shape characteristics. The resulting extended query refinement has a significant impact for medical CBIR applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043837PMC
http://dx.doi.org/10.1007/s10278-007-9037-4DOI Listing

Publication Analysis

Top Keywords

query refinement
20
extended query
12
image retrieval
12
impact image
8
query logging
8
query
6
refinement
5
medical
4
refinement medical
4
image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!