Intraventricular ghrelin activates oxytocin neurons: implications in feeding behavior.

Neuroreport

Minnesota Obesity Center, Veterans' Affairs Medical Center, Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minneapolis 55108, USA.

Published: March 2007

Ghrelin affects behavioral and physiological responses, such as feeding or the activity of the HPA axis. Distribution of its receptor in central sites involved in neuroendocrine control, including the hypothalamic paraventricular nucleus, indicates that interplay with multiple neuropeptidergic systems underlies ghrelin's actions. We report that intracerebroventricular ghrelin increases c-Fos immunoreactivity of oxytocin neurons in magno and parvocellular portions of the paraventricular nucleus. The orexigenic response to ghrelin administered at the dose that activates oxytocin neurons can be further elevated by pretreatment with a selective oxytocin receptor antagonist. Our data suggest that oxytocin may be responsible for the mediation of some effects induced by ghrelin. Modifications in the activity of the oxytocin system may alter some of these effects.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0b013e328058684eDOI Listing

Publication Analysis

Top Keywords

oxytocin neurons
12
activates oxytocin
8
paraventricular nucleus
8
oxytocin
6
intraventricular ghrelin
4
ghrelin activates
4
neurons implications
4
implications feeding
4
feeding behavior
4
ghrelin
4

Similar Publications

Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress.

View Article and Find Full Text PDF

Integrative studies of diverse neuronal networks that govern social behavior are hindered by a lack of methods to record neural activity comprehensively across the entire brain. The recent development of the miniature fish Danionella cerebrum as a model organism offers one potential solution, as the small size and optical transparency of these animals make it possible to visualize circuit activity throughout the nervous system. Here, we establish the feasibility of using Danionella as a model for social behavior and socially reinforced learning by showing that adult fish exhibit strong affiliative tendencies and that social interactions can serve as the reinforcer in an appetitive conditioning paradigm.

View Article and Find Full Text PDF

Introduction: The development of stress-related psychopathologies, often associated with socio-emotional dysfunctions, is crucially determined by genetic and environmental factors, which shape the individual vulnerability or resilience to stress. Especially early adolescence is considered a vulnerable time for the development of psychopathologies. Various mouse strains are known to age-dependently differ in social, emotional, and endocrine stress responses based on genetic and epigenetic differences.

View Article and Find Full Text PDF

Hormonal mechanisms in the paraventricular nuclei associated with hyperalgesia in Parkinson's disease model rats.

Biochem Biophys Res Commun

January 2025

Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:

Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia.

View Article and Find Full Text PDF

Oxytocin (OT) neurons in the hypothalamic paraventricular nucleus (PVH) play an important role in various physiological and behavioral processes, including the initiation of milk ejection and the regulation of maternal behaviors. However, their activity patterns at the single-cell level remain poorly understood. Using microendoscopic Ca imaging in freely moving mouse dams, we demonstrate highly correlated pulsatile activity among individual OT neurons during lactation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!