Escherichia coli possesses class Ia, class Ib, and class III ribonucleotide reductases (RNR). Under standard laboratory conditions, the aerobic class Ia nrdAB RNR genes are well expressed, whereas the aerobic class Ib nrdEF RNR genes are poorly expressed. The class III RNR is normally expressed under microaerophilic and anaerobic conditions. In this paper, we show that the E. coli YbaD protein differentially regulates the expression of the three sets of genes. YbaD is a homolog of the Streptomyces NrdR protein. It is not essential for growth and has been renamed NrdR. Previously, Streptomyces NrdR was shown to transcriptionally regulate RNR genes by binding to specific 16-bp sequence motifs, NrdR boxes, located in the regulatory regions of its RNR operons. All three E. coli RNR operons contain two such NrdR box motifs positioned in their regulatory regions. The NrdR boxes are located near to or overlap with the promoter elements. DNA binding experiments showed that NrdR binds to each of the upstream regulatory regions. We constructed deletions in nrdR (ybaD) and showed that they caused high-level induction of transcription of the class Ib RNR genes but had a much smaller effect on induction of transcription of the class Ia and class III RNR genes. We propose a model for differential regulation of the RNR genes based on binding of NrdR to the regulatory regions. The model assumes that differences in the positions of the NrdR binding sites, and in the sequences of the motifs themselves, determine the extent to which NrdR represses the transcription of each RNR operon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951866 | PMC |
http://dx.doi.org/10.1128/JB.00440-07 | DOI Listing |
Cancer Drug Resist
December 2024
Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic.
Mutations in the mitochondrial (mt) genome contribute to metabolic dysfunction and their accumulation relates to disease progression and resistance development in cancer cells. This study explores the mutational status of the mt genome of cisplatin-resistant -sensitive testicular germ cell tumor (TGCT) cells and explores its association with their respiration parameters, expression of respiratory genes, and preferences for metabolic pathways to reveal new markers of therapy resistance in TGCTs. Using Illumina sequencing with Twist Enrichment Panel, the mutations of mt genomes of sensitive 2102EP, H12.
View Article and Find Full Text PDFBraz J Otorhinolaryngol
January 2025
Shanghai Jiao Tong University, School of Medicine, Hainan Branch of Shanghai Children's Medical Center, Department of Otorhinolaryngology, Sanya, China; Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otorhinolaryngology, Shanghai, China. Electronic address:
Objective: We aimed to investigate the correlation between prevalent risk factors for high-risk neonates in neonatal intensive care unit and their hearing loss, and to examine the audiological features and genetic profiles associated with different deafness mutations in our tertiary referral center. This research seeks to deepen our understanding of the etiology behind congenital hearing loss.
Methods: We conducted initial hearing screenings, including automated auditory brainstem response, distortion product otoacoustic emission, and acoustic immittance on 443 high-risk neonates within 7 days after birth and 42 days (if necessary) after birth.
Plant Dis
October 2024
Fundecitrus, Pesquisa & Desenvolvimento, Araraquara, SP, Brazil.
The occurrence of 'Candidatus Liberibacter' spp. and '. Phytoplasma' spp.
View Article and Find Full Text PDFViruses
September 2024
Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
Mol Cell
September 2024
Centre de Biophysique Moléculaire, CNRS UPR4301, Affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France; ED 549, Sciences Biologiques & Chimie du Vivant, Université d'Orléans, Orléans, France. Electronic address:
Binding of the bacterial Rho helicase to nascent transcripts triggers Rho-dependent transcription termination (RDTT) in response to cellular signals that modulate mRNA structure and accessibility of Rho utilization (Rut) sites. Despite the impact of temperature on RNA structure, RDTT was never linked to the bacterial response to temperature shifts. We show that Rho is a central player in the cold-shock response (CSR), challenging the current view that CSR is primarily a posttranscriptional program.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!