Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals.

Biophys J

Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.

Published: September 2007

Protein-crystal interactions are known to be important in biomineralization. To study the physicochemical basis of such interactions, we have developed a technique that combines confocal microscopy of crystals with fluorescence imaging of proteins. In this study, osteopontin (OPN), a protein abundant in urine, was labeled with the fluorescent dye AlexaFluor-488 and added to crystals of calcium oxalate monohydrate (COM), the major constituent of kidney stones. In five to seven optical sections along the z axis, scanning confocal microscopy was used to visualize COM crystals and fluorescence imaging to map OPN adsorbed to the crystals. To quantify the relative adsorption to different crystal faces, fluorescence intensity was measured around the perimeter of the crystal in several sections. Using this method, it was shown that OPN adsorbs with high specificity to the edges between {100} and {121} faces of COM and much less so to {100}, {121}, or {010} faces. By contrast, poly-L-aspartic acid adsorbs preferentially to {121} faces, whereas poly-L-glutamic acid adsorbs to all faces approximately equally. Growth of COM in the presence of rat bone OPN results in dumbbell-shaped crystals. We hypothesize that the edge-specific adsorption of OPN may be responsible for the dumbbell morphology of COM crystals found in human urine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1948058PMC
http://dx.doi.org/10.1529/biophysj.106.101881DOI Listing

Publication Analysis

Top Keywords

calcium oxalate
8
oxalate monohydrate
8
confocal microscopy
8
crystals fluorescence
8
fluorescence imaging
8
{100} {121}
8
{121} faces
8
acid adsorbs
8
crystals
7
opn
5

Similar Publications

Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis.

View Article and Find Full Text PDF

Vitamin C is an antioxidant and is essential for immune function and infection resistance. Supplementation is necessary when a sufficient amount of vitamin C is not obtained through the diet. Alternative formulations of vitamin C may enhance its bioavailability and retention over traditional ascorbic acid.

View Article and Find Full Text PDF

Ethylene glycol (C₂H₆O₂), a toxic alcohol commonly found in automotive antifreeze, de-icing solutions, and industrial coolants, can cause severe toxicity when ingested. Due to its sweet taste, it is often consumed accidentally or intentionally, leading to life-threatening consequences such as metabolic acidosis, acute kidney injury (AKI), and mortality. Prompt diagnosis and early treatment with antidotes such as fomepizole or ethanol, combined with hemodialysis, are essential in preventing severe outcomes.

View Article and Find Full Text PDF

The initiation of calcium oxalate (CaOx) kidney stone formation is highly likely to stem from injury to the renal tubular epithelial cells (RTECs) induced by stimulation from an aberrant urinary environment. CHAC1 plays a critical role in stress response mechanisms by regulating glutathione metabolism. Endoplasmic reticulum (ER) stress and ferroptosis are demonstrated to be involved in stone formation.

View Article and Find Full Text PDF

Unlabelled: is the causal agent of stem rot of many crops, a highly destructive disease of groundnut ( L). Based on evidence that many groundnut genotypes have an inherent ability to tolerate the pathogenicity of species, twenty-two genotypes of groundnut were screened against infection in sick plot field experiment; four genotypes, namely CS19, GG16, GG20 and TG37A, were selected as being the most tolerant, moderately tolerant, susceptible and highly susceptible to stem rot, respectively. Stem tissues (1cm from the collar region) from infected and healthy plants of four selected genotypes differing in susceptibility were examined using a scanning electron microscope (SEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!