A novel method for the rapid and sensitive analysis of 1-hydroxypyrene (1-OHP) in human urine has been developed that uses a resonance light scattering (RLS) technique. The assay was based on the interaction of ethyl violet (EV) with 1-hydroxypyrene to form an ion-associate complex, which resulted in the enhancement of RLS intensity and the appearance of new RLS spectra. In the presence of anionic surfactant, the maximum RLS peak of the system was located at 396 nm at pH 8.0. Under the optimum conditions, it was found that the enhanced RLS intensity was directly proportional to the concentration of 1-hydroxypyrene in the range of 4.0 - 982 microg l(-1). The detection limit was 1.2 microg l(-1) and the recoveries of 1-hydroxypyrene were 92.8 - 102.3% (n = 6). The proposed method was successfully applied to the analysis of human urine samples. The results of 1-hydroxypyrene were in agreement with those obtained by the method of high-performance liquid chromatography.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.23.533DOI Listing

Publication Analysis

Top Keywords

resonance light
8
light scattering
8
human urine
8
rls intensity
8
microg l-1
8
1-hydroxypyrene
5
rls
5
scattering 1-hydroxypyrene-ethyl
4
1-hydroxypyrene-ethyl violet-anionic
4
violet-anionic surfactant
4

Similar Publications

Baicalein tethers CD274/PD-L1 for autophagic degradation to boost antitumor immunity.

Autophagy

December 2024

Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.

Immune checkpoint inhibitors, especially those targeting CD274/PD-L1yield powerful clinical therapeutic efficacy. Thoughmuch progress has been made in the development of antibody-basedCD274 drugs, chemical compounds applied for CD274degradation remain largely unavailable. Herein,baicalein, a monomer of traditional Chinese medicine, isscreened and validated to target CD274 and induces itsmacroautophagic/autophagic degradation.

View Article and Find Full Text PDF

Photocatalytic technology provides a new approach for the harmless treatment of low concentration NO in the atmosphere. The development of high-performance semiconductor materials to improve the light absorption efficiency and the separation efficiency of photogenerated carriers is the focus of the research. Bismuth oxybismuth sulfate (BiOSO) shows significant potential for photocatalytic NO purification due to its unique electronic and layered structure.

View Article and Find Full Text PDF

A photothermal MXene-derived heterojunction for boosted CO reduction and tunable CH selectivity.

J Colloid Interface Sci

December 2024

School of Environment, South China Normal University, Guangzhou 510006, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China. Electronic address:

We report here a BiWO/TiCT@Ag (BT@Ag) photothermal photocatalyst for efficient CO reduction with tunable CH selectivity. Incorporation of TiCT MXene creates well-defined heterointerfaces between BiWO and TiCT and converts thermal energy upon light illumination via photothermal effect, which contributes to a mitigation of the recombination of photo-induced charge carries for a high electron mobility. Density functional theory calculations substantiate that TiCT functions as the adsorption site and active center where the transferred electrons are effectively involved in CO reduction for enhanced CH selectivity.

View Article and Find Full Text PDF

Elucidating the synergistic effect of oxygen vacancies and Z-scheme heterojunction in NU-1000/BiOCl-Ov composites towards enhanced photocatalytic degradation of tetracycline hydrochloride.

J Colloid Interface Sci

December 2024

School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China. Electronic address:

Although Z-scheme heterojunction composites have been widely studied in photocatalysis, in-depth investigation of oxygen vacancies (Ov) in the Z-scheme photocatalysts is still rare. Herein, an oxygen vacancies modified NU-1000/BiOCl-Ov composite with Z-scheme heterojunction was rationally designed and fabricated. The combination of X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experiment verified the presence of oxygen vacancies, meanwhile the Z-scheme charge transfer across the heterojunction interface was confirmed in detail by the in situ-XPS, Kelvin probe force microscope (KPFM) studies, ultraviolet photoelectron spectroscopy (UPS), EPR radical capture experiment, as well as density functional theory (DFT) calculation.

View Article and Find Full Text PDF

Brain MRI volumetry and atrophy rating scales as predictors of amyloid status and eligibility for anti-amyloid treatment in a real-world memory clinic setting.

J Neurol

December 2024

Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden.

Predicting amyloid status is crucial in light of upcoming disease-modifying therapies and the need to identify treatment-eligible patients with Alzheimer's disease. In our study, we aimed to predict CSF-amyloid status and eligibility for anti-amyloid treatment in a memory clinic by (I) comparing the performance of visual/automated rating scales and MRI volumetric analysis and (II) combining MRI volumetric data with neuropsychological tests and APOE4 status. Two hundred ninety patients underwent a comprehensive assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!