A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. | LitMetric

Background And Purpose: Arterial bifurcation apices are common sites for cerebral aneurysms, raising the possibility that the unique hemodynamic conditions associated with flow dividers predispose the apical vessel wall to aneurysm formation. This study sought to identify the specific hemodynamic insults that lead to maladaptive vascular remodeling associated with aneurysm development and to identify early remodeling events at the tissue and cellular levels.

Methods: We surgically created new branch points in the carotid vasculature of 6 female adult dogs. In vivo angiographic imaging and computational fluid dynamics simulations revealed the detailed hemodynamic microenvironment for each bifurcation, which were then spatially correlated with histologic features showing specific tissue responses.

Results: We observed 2 distinct patterns of vessel wall remodeling: (1) hyperplasia that formed an intimal pad at the bifurcation apex and (2) destructive remodeling in the adjacent region of flow acceleration that resembled the initiation of an intracranial aneurysm, characterized by disruption of the internal elastic lamina, loss of medial smooth muscle cells, reduced proliferation of smooth muscle cells, and loss of fibronectin.

Conclusions: Strong localization of aneurysm-type remodeling to the region of accelerating flow suggests that a combination of high wall shear stress and a high gradient in wall shear stress represents a "dangerous" hemodynamic condition that predisposes the apical vessel wall to aneurysm formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714768PMC
http://dx.doi.org/10.1161/STROKEAHA.106.481234DOI Listing

Publication Analysis

Top Keywords

vessel wall
12
arterial bifurcation
8
vascular remodeling
8
apical vessel
8
wall aneurysm
8
aneurysm formation
8
smooth muscle
8
muscle cells
8
wall shear
8
shear stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!