Download full-text PDF

Source
http://dx.doi.org/10.1126/science.316.5826.829cDOI Listing

Publication Analysis

Top Keywords

co2 emissions
4
emissions piece
4
piece pie
4
co2
1
piece
1
pie
1

Similar Publications

Carbon stock quantification and climate mitigation potential of a tropical moist forest in Ethiopia.

PLoS One

January 2025

Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, United States of America.

The significance of forests in absorbing and storing carbon plays a crucial role in international greenhouse gas policies outlined by the United Nations Framework Convention for Climate Change (UNFCC). This study was conducted in a typical tropical moist forest of Ethiopia to assess its carbon stock, a critical issue in climate policy. The study domain was divided into six strata using elevation criteria.

View Article and Find Full Text PDF

In this study, the effect of additives on particulate matter (PM) and flue gas emissions during the co-combustion of poultry waste and pine woodchips in air and oxy-fuel combustion conditions was examined. The appropriate additive for the fuel mixture to reduce PM emissions has been selected by a fast screening method based on thermogravimetric analysis (TGA) in oxygen environment. Among the additives CaHPO, MgCO, MnCO, MgPO, kaolin, CaO, and Zn, the most suitable ones were determined as Zn and MgCO.

View Article and Find Full Text PDF

The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.

View Article and Find Full Text PDF

Basic Characteristics of Ionic Liquid-Gated Graphene FET Sensors for Nitrogen Cycle Monitoring in Agricultural Soil.

Biosensors (Basel)

January 2025

Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Nagano, Japan.

Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into NO3--N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (NO), a greenhouse gas with a warming potential about 300-times greater than carbon dioxide (CO).

View Article and Find Full Text PDF

This paper provides an overview of the INGENIOUS (UnderstandING the sourcEs, traNsformations and fates of IndOor air pollUtantS) project, aiming to better understand air pollution in homes. Although our homes are the microenvironment in which we spend most of our time, we know relatively little about the sources, transformation processes and fates of indoor air pollutants, or our exposure to them. INGENIOUS aims to address this knowledge gap by delivering: an indoor emissions inventory for UK homes; comprehensive air pollutant measurements in 310 homes in Bradford using a combination of low cost-sensors and more advanced air quality instrumentation; an analysis of the impact of indoor air pollution on outdoor air quality and using mobile measurements; insight into future indoor air quality using detailed air pollution models; identification of indoor air pollutants that warrant further toxicological study; and better understanding of the barriers and facilitators for behaviour that drives improved indoor air quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!