Age-related physiological and morphological changes of muscle spindles were examined in rats (male Fischer 344/DuCrj: young, 4-13 months; middle-aged, 20-22 months; old, 28-31 months). Single afferent discharges of the muscle spindles in gastrocnemius muscles were recorded from a finely split dorsal root during ramp-and-hold (amplitude, 2.0 mm; velocity, 2-20 mm s(-1)) or sinusoidal stretch (amplitude, 0.05-1.0 mm; frequency, 0.5-2 Hz). Respective conduction velocities (CVs) were then measured. After electrophysiological experimentation, the muscles were dissected. The silver-impregnated muscle spindles were teased and then analysed using a light microscope. The CV and dynamic response to ramp-and-hold stretch of many endings were widely overlapped in old rats because of the decreased CV and dynamic response of primary endings. Many units in old rats showed slowing of discharge during the release phase under ramp-and-hold stretch and continuous discharge under sinusoidal stretch, similarly to secondary endings in young and middle-aged rats. Morphological studies revealed that primary endings of aged rat muscle spindles were less spiral or non-spiral in appearance, but secondary endings appeared unchanged. These results suggest first that primary muscle spindles in old rats are indistinguishable from secondary endings when determined solely by previously used physiological criteria. Secondly, these physiological results reflect drastic age-related morphological changes in spindle primary endings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075321 | PMC |
http://dx.doi.org/10.1113/jphysiol.2007.130120 | DOI Listing |
Purpose: Fibrosis of muscle spindles (sensory organs) in back muscles induced by intervertebral disc (IVD) degeneration could limit transmission of muscle stretch to the sensory receptor and explain the proprioceptive deficits common in back pain. Exercise reduces back muscles fibrosis. This study investigated whether targeted muscle activation via neurostimulation reverses or resolves muscle spindle fibrosis in a model of IVD injury.
View Article and Find Full Text PDFCompr Physiol
December 2024
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances.
View Article and Find Full Text PDFNature
January 2025
Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK.
Exp Physiol
November 2024
School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
J Muscle Res Cell Motil
November 2024
PAS, Section for Physiology, Department for Veterinary and Animal Sciences (IVH), Faculty of Health & Medical Sciences, University of Copenhagen, Dyrlaegevej 100, Frederiksberg C, 1870, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!