Objective: Executive dysfunction in ADHD is well supported. However, recent studies suggest that more fundamental impairments may be contributing. We assessed brain function in adults with ADHD during simple and complex forms of processing.
Method: We used functional magnetic resonance imaging with forward and backward digit spans to investigate number repetitions and complex working memory function. If pathology is limited to higher cognitive operations, group differences should be confined to the backward condition.
Results: During the forward digit span, ADHD participants exhibited greater activation of LH linguistic processing areas and increased activation of right frontal and parietal cortices. During the backward digit span, they exhibited greater activation of LH linguistic processing areas and failed to activate bilateral parietal regions important for the complex executive operations.
Conclusion: Abnormal brain function among adult ADHD participants was not limited to complex executive functions. Abnormal processing of numeric stimuli was indicated during both simple and complex cognitive operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087054706294101 | DOI Listing |
Curr Eye Res
January 2025
Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.
Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.
Sci Rep
January 2025
Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.
Many cellular patterns exhibit a reaction-diffusion component, suggesting that Turing instability may contribute to pattern formation. However, biological gene-regulatory pathways are more complex than simple Turing activator-inhibitor models and generally do not require fine-tuning of parameters as dictated by the Turing conditions. To address these issues, we employ random matrix theory to analyze the Jacobian matrices of larger networks with robust statistical properties.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States.
Ferroelectric HfZrO (HZO) capacitors have been extensively explored for in-memory computing (IMC) applications due to their nonvolatility and back-end-of-line (BEOL) compatible process. Several IMC approaches using resistance and capacitance states in ferroelectric HZO have been proposed for vector-matrix multiplication (VMM), but previous approaches suffer from limited accuracy and reliability. In this work, we propose a promising approach centered on the remanent polarization (P) switching of binary ferroelectric HZO capacitor synapses.
View Article and Find Full Text PDFComput Biol Med
January 2025
University of Rwanda, Rwanda. Electronic address:
Deep learning methods have significantly improved medical image analysis, particularly in detecting COVID-19 chest X-rays. Nonetheless, these methodologies frequently inhibit some drawbacks, such as limited interpretability, extensive computational resources, and the need for extensive datasets. To tackle these issues, we introduced two novel algorithms: the Dynamic Co-Occurrence Grey Level Matrix (DC-GLM) and the Contextual Adaptation Multiscale Gabor Network (CAMSGNeT).
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Chinese Academy of Agricultural Sciences, Chengdu 610213, PR China, Beijing, 100081, CHINA.
Among the components of a humanoid robot, a humanoid torso plays a vital role in supporting a humanoid robot to complete the desired motions. In this paper, a new LARMbot torso is developed for obtaining better working performance based on biological features. Through analyzing the anatomy of a human torso and human spine, a parallel cable-driven is proposed to actuate the whole mechanism by using two servo motors and two pulleys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!