In vitro models of TGF-beta-induced fibrosis suitable for high-throughput screening of antifibrotic agents.

Am J Physiol Renal Physiol

Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Disases, National Institutes of Health, Bethesda, MD 20892-1268, USA.

Published: August 2007

Progressive fibrosis is a cause of progressive organ dysfunction. Lack of quantitative in vitro models of fibrosis accounts, at least partially, for the slow progress in developing effective antifibrotic drugs. Here, we report two complementary in vitro models of fibrosis suitable for high-throughput screening. We found that, in mesangial cells and renal fibroblasts grown in eight-well chamber slides, transforming growth factor-beta1 (TGF-beta1) disrupted the cell monolayer and induced cell migration into nodules in a dose-, time- and Smad3-dependent manner. The nodules contained increased interstitial collagens and showed an increased collagen I:IV ratio. Nodules are likely a biological consequence of TGF-beta1-induced matrix overexpression since they were mimicked by addition of collagen I to the cell culture medium. TGF-beta1-induced nodule formation was inhibited by vacuum ionized gas treatment of the plate surface. This blockage was further enhanced by precoating plates with matrix proteins but was prevented, at least in part, by poly-l-lysine (PLL). We have established two cell-based models of TGF-beta-induced fibrogenesis, using mesangial cells or fibroblasts cultured in matrix protein or PLL-coated 96-well plates, on which TGF-beta1-induced two-dimensional matrix accumulation, three-dimensional nodule formation, and monolayer disruption can be quantitated either spectrophotometrically or by using a colony counter, respectively. As a proof of principle, chemical inhibitors of Alk5 and the antifibrotic compound tranilast were shown to have inhibitory activities in both assays.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00379.2006DOI Listing

Publication Analysis

Top Keywords

vitro models
12
models tgf-beta-induced
8
fibrosis suitable
8
suitable high-throughput
8
high-throughput screening
8
models fibrosis
8
mesangial cells
8
nodule formation
8
fibrosis
4
tgf-beta-induced fibrosis
4

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.

Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Background: Preimplantation embryos in vivo are exposed to various growth factors in the female reproductive tract that are absent in in vitro embryo culture media. Cell-free fat extract exerts antioxidant, anti-ageing, and ovarian function-promoting effects. However, its effects on embryo quality are yet to be investigated.

View Article and Find Full Text PDF

Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!