Toll-like receptors (TLR) 2, TLR4 and TLR5 are primary mucosal sensors of microbial patterns. Dissection of the cross-talk between TLRs in intestinal cells has thus far been hampered by the lack of functional TLR2 and TLR4 in in vitro model systems. Here we report that the mouse intestinal epithelial cell line mIC(cl2) expresses these TLRs and that receptor expression and function are regulated by environmental TLR stimuli. Our results show that stimulation of TLR5 by bacterial flagellin resulted in upregulated TLR2 and TLR4 mRNA and concomitant sensitization of the cells for subsequent TLR2 (Pam(3)CSK(4)) and TLR4 (LPS) stimulation. Exposure to low amounts of either Pam(3)CSK(4) or LPS in turn downregulated TLR5 mRNA and attenuated subsequent flagellin-mediated NF-kappaB activation, pointing to a negative feedback mechanism. Pam(3)CSK(4) and LPS also downregulated TLR4 mRNA but upregulated TLR2 mRNA and sensitized cells for subsequent TLR2 stimulation. Inhibition of the phosphatidyl-inositol-3-kinase/Akt pathway only affected LPS-mediated TLR cross-talk indicating that differential TLR cross-regulation was conferred via different mechanisms. Together, our results demonstrate that the expression and function of TLR in intestinal cells are highly dynamic and tightly regulated in response to encountered bacterial stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2007.04.001 | DOI Listing |
Front Immunol
January 2025
Rheumatology Unit, Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy.
Introduction: Lupus nephritis (LN), caused by immune complexes produced or deposited from the bloodstream, is one of the most severe features of Systemic Lupus Erythematosus (SLE) leading to an increased morbidity and mortality. Toll like receptors (TLRs), such as TLR3, TLR7 and TLR9, may play a key role in its pathogenesis. Interleukin-32 (IL-32), a cytokine involved in both innate and adaptive immune responses, has been widely considered in autoimmune-inflammatory rheumatic diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States.
Introduction: Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis.
Methods: PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV).
Genome Biol Evol
January 2025
Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Bahir Dar University, P.O.Box 79, Bahir Dar, Ethiopia.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed substantial challenges on our society due to the COVID-19 pandemic. This virus relies heavily on its surface glycoprotein (S-glycoprotein) to facilitate attachment, fusion, and entry into host cells. While the nucleoprotein (N) in the ribonucleoprotein core binds to the viral RNA genome.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China. Electronic address:
Psoriasis is a prevalent, chronic inflammatory disease characterized by abnormal skin plaques. To date, physical therapy, topical therapy, systemic therapy and biologic drugs are the most commonly employed strategies for treating psoriasis. Recently, many agents have advanced to clinical trials, and some anti-psoriasis drugs have been approved, including antibody drugs and small-molecule drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!