Background: In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance.

Results: Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators.

Conclusion: We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network algorithms. We used SynTReN data to develop and test an alternative module network learning strategy, which is incorporated in the software package LeMoNe, and we provide evidence that this alternative strategy has several advantages with respect to existing methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892074PMC
http://dx.doi.org/10.1186/1471-2105-8-S2-S5DOI Listing

Publication Analysis

Top Keywords

module network
20
network learning
16
regulatory programs
12
software package
12
data
9
learning algorithms
8
simulated data
8
alternative module
8
programs conditional
8
conditional entropy
8

Similar Publications

Background: The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.

View Article and Find Full Text PDF

Digestive and psychiatric disorders tend to co-occur, yet mechanisms remain unclear. Leveraging genetic and transcriptomic data integration, we conduct multi-trait analysis of GWAS (MTAG) and weighted gene co-expression network analysis (WGCNA) to explore shared mechanism between psychiatric and gastrointestinal disorders. Significant genetic correlations were found between these disorders, especially in irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD), depression (DEP), and neuroticism (NE).

View Article and Find Full Text PDF

Testicular germ cell tumour (TGCT) is a malignancy with known inherited risk factors, affecting young men. We have previously identified several hundred differentially abundant circulating RNAs in pre-diagnostic serum from TGCT cases compared to healthy controls. In this study, we performed Weighted Gene Co-expression Network Analysis (WGCNA) on mRNA and miRNA data from these samples.

View Article and Find Full Text PDF

DECT sparse reconstruction based on hybrid spectrum data generative diffusion model.

Comput Methods Programs Biomed

January 2025

Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China.

Purpose: Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution.

View Article and Find Full Text PDF

Dual-path neural network extracts tumor microenvironment information from whole slide images to predict molecular typing and prognosis of Glioma.

Comput Methods Programs Biomed

January 2025

School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging, Computing and Computer Assisted Intervention, Shanghai, 200433, China. Electronic address:

Background And Objective: Utilizing AI to mine tumor microenvironment information in whole slide images (WSIs) for glioma molecular subtype and prognosis prediction is significant for treatment. Existing weakly-supervised learning frameworks based on multi-instance learning have potential in WSIs analysis, but the large number of patches from WSIs challenges the effective extraction of key local patch and neighboring patch microenvironment info. Therefore, this paper aims to develop an automatic neural network that effectively extracts tumor microenvironment information from WSIs to predict molecular typing and prognosis of glioma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!