Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amyloid diseases are characterized by the formation of insoluble amyloid fibrils from previously soluble polypeptides. In Alzheimer's disease (AD), amyloid fibrils, formed from beta-amyloid peptides, are deposited as extracellular amyloid plaques only inside the brain. As previously shown, Alzheimer's-like plaque formation in human monocyte culture recapitulates the features of in vivo amyloid plaque formation. Here we show that this cell model can be used to screen compounds that potentially influence amyloid formation in a throughput manner. We found that cellular amyloid fibril formation can be enhanced by dextran sulfate as well as heparin and can be impaired by stabilization of a micell-like beta-amyloid conformer by using myoinositol or by inhibition of phagocytosis with cytochalasin D. Altogether, our data demonstrate the utility of this cell model for investigating pathways and molecular interactions critical to amyloidogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.21311 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!