Treatment of rat glioma C6 cells with the beta-receptor agonist isoproterenol induces a massive increase in cAMP. Concomitantly the cells change their morphology from a fibroblast-type to an astrocyte-like (stellated) cell shape. The stellated morphology can be completely reverted by thrombin and sphingosine-1-phosphate (S-1-P) but also to a certain extent by clinical concentrations of volatile anesthetics. The anesthetic-induced reversion of the stellated cell shape seems to be mediated by a number of cellular alterations. Central to the effect is most likely a RhoA/Rho-kinase activation, but also the MAPKK/MEK and the Akt/protein kinase B pathway are activated by the anesthetics. With the use of specific inhibitors we were able to show that activation of the MAPKK/MEK pathway inhibits, whereas activation of the Akt/protein kinase B pathway stimulates the reversal of the stellated cell shape by the anesthetics. In summary, volatile anesthetics affect the morphology of rat glioma C6 cells by activation of the RhoA/Rho kinase, the MAPKK/MEK, and the Akt/protein kinase B signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.21294 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!