Mutant membrane proteins are frequently retained in the early secretory pathway by a quality control system, thereby causing disease. An example are mutants of the vasopressin V(2) receptor (V(2)R) leading to nephrogenic diabetes insipidus. Transport-defective V(2)Rs fall into two classes: those retained exclusively in the endoplasmic reticulum (ER) and those reaching post-ER compartments such as the ER/Golgi intermediate compartment. Although numerous chemical or pharmacological chaperones that rescue the transport of ER-retained membrane proteins are known, substances acting specifically in post-ER compartments have not been described as yet. Using the L62P (ER-retained) and Y205C (reaching post-ER compartments) mutants of the V(2)R as a model, we show here that the cell-penetrating peptide penetratin and its synthetic analog KLAL rescue the transport of the Y205C mutant. In contrast, the location of the L62P mutant is not influenced by either peptide because the peptides are unable to enter the ER. We also show data indicating that the peptide-mediated transport rescue is associated with an increase in cytosolic Ca(2+) concentrations. Thus, we describe a new class of substances influencing protein transport specifically in post-ER compartments.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M611530200DOI Listing

Publication Analysis

Top Keywords

post-er compartments
16
nephrogenic diabetes
8
vasopressin receptor
8
membrane proteins
8
reaching post-er
8
rescue transport
8
rescue
4
rescue nephrogenic
4
diabetes insipidus-causing
4
insipidus-causing vasopressin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!