Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans.

J Biol Chem

Departamento de Bioquímica, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua 3 de Maio, 100, Ed. INFAR, CEP 04044-020, São Paulo, Brazil.

Published: July 2007

AI Article Synopsis

Article Abstract

Recently we have shown that crotamine, a toxin from the South American rattlesnake Crotalus durissus terrificus venom, belongs to the family of cell-penetrating peptides. Moreover, crotamine was demonstrated to be a marker of centrioles, of cell cycle, and of actively proliferating cells. Herein we show that this toxin at non-toxic concentrations is also capable of binding electrostatically to plasmid DNA forming DNA-peptide complexes whose stabilities overcome the need for chemical conjugation for carrying nucleic acids into cells. Interestingly, crotamine demonstrates cell specificity and targeted delivery of plasmid DNA into actively proliferating cells both in vitro and in vivo, which distinguishes crotamine from other known natural cell-penetrating peptides. The mechanism of crotamine penetration and cargo delivery into cells was also investigated, showing the involvement of heparan sulfate proteoglycans in the uptake phase, which is followed by endocytosis and peptide accumulation within the acidic endosomal vesicles. Finally, the permeabilization of endosomal membranes induced by crotamine results in the leakage of the vesicles contents to the cell cytosol.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M604876200DOI Listing

Publication Analysis

Top Keywords

delivery cells
8
heparan sulfate
8
sulfate proteoglycans
8
cell-penetrating peptides
8
actively proliferating
8
proliferating cells
8
plasmid dna
8
crotamine
7
cells
5
crotamine mediates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!