Prevention of oxidative damage that contributes to the loss of bioenergetic capacity in ageing skin.

Exp Gerontol

Estée Lauder Companies, Biological Research Department Europe, Nijverheidsstraat 15, 2260 Oevel, Belgium.

Published: September 2007

Skin ageing is a complex biological process related to a decline in physiological and biochemical performance. A decline in the mitochondrial energy production is a feature of ageing at the cellular level. This is partially attributed to excessive production of reactive oxygen species such as superoxide and hydrogen peroxide in aged individuals. We have investigated the effect of (glyc)oxidative stress on two biochemical targets relevant for the energy metabolism of the skin. First, we showed an age dependent decline in the activity of the hydrogen peroxide detoxifying antioxidant catalase in stratum corneum on a chronically sun-exposed site. Furthermore catalase was sensitive to peroxynitrite-induced in vitro inactivation. Catalase mimetics as well as peroxynitrite scavengers are proposed to maintain hydrogen peroxide detoxification pathways. The second target was creatine kinase, an enzyme that controls the creatine-creatine phosphate shuttle. Creatine kinase lost activity after in vitro glycation by methylglyoxal. This activity loss could be prevented by antiglycation actives. These data suggest that biomolecules involved in energy homeostasis become damaged by different sources of stress. Actives specifically selected for optimal protection against these stress situations will decrease skin vulnerability and prevent the premature loss of skin function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2007.03.008DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
12
creatine kinase
8
skin
5
prevention oxidative
4
oxidative damage
4
damage contributes
4
contributes loss
4
loss bioenergetic
4
bioenergetic capacity
4
capacity ageing
4

Similar Publications

Electrochemiluminescence (ECL) of luminol and electrocatalysis by Prussian blue were compared for the selective detection of HO at the boron-doped diamond (BDD) electrodes. The HO detection was optimized by various parameters such as the applied potential at pH 7.4, which is a physiological value usually used for HO detection in enzymatic reactions.

View Article and Find Full Text PDF

Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) plays a critical role in the regulation and progress of autophagy, an essential recycling process that influences cellular homeostasis and stress response. Autophagy is characterized by the formation of intracellular vesicles analogous to recycle "bags" called autophagosomes, which fuse with lysosomes to form autolysosomes, eventually ending up as lysosomes. We have developed two novel autophagic vesicle-targeted peptide-based sensors, for HO and for pH, to simultaneously track HO and pH dynamics within autophagic vesicles as autophagy advances.

View Article and Find Full Text PDF

Corrigendum to "Hydrogen peroxide as a mitigation against sp. Bloom" [Aquaculture, Volume 577, 15 December 2023, 739932].

Aquaculture

January 2025

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.

[This corrects the article DOI: 10.1016/j.aquaculture.

View Article and Find Full Text PDF

Water used in post-harvest handling and processing operations is an important risk factor for microbiological cross-contamination of fruits, vegetables and herbs (FVH). Industrial data indicated that the frozen FVH sector is characterised by operational cycles between 8 and 120 h, variable product volumes and no control of the temperature of process water. Intervention strategies were limited to the use of water disinfection treatments such as peroxyacetic acid and hydrogen peroxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!