The early events that occur rapidly after injury trigger signal cascades that are essential for proper wound closure of corneal epithelial cells. We hypothesize that injury releases ATP, which stimulates purinergic receptors and elicits the phosphorylation of epidermal growth factor receptor (EGFR) tyrosine residues and subsequent cell migration by a MMP and HB-EGF dependent pathway. We demonstrated that the inhibition of purinergic receptors with the antagonist, Reactive Blue 2, abrogated the phosphorylation of EGFR and ERK. Pre-incubation of cells with the EGFR kinase inhibitor, AG1478, and subsequent stimulation by injury or ATP resulted in a decrease in phosphorylation of EGFR and migration. Furthermore, downregulation of EGFR by siRNA, inhibited the EGF-induced intracellular Ca(2+) wave. However, the response to injury and ATP was retained indicating the presence of two signaling pathways. Inhibition with either CRM197 or TIMP-3 decreased injury and nucleotide-induced phosphorylation of both EGFR and ERK. Incubation in the presence of a functional blocking antibody to HB-EGF also resulted in a decrease in the phosphorylation of EGFR. In addition, cell migration was inhibited by CRM197 and rescued when cells were incubated with HB-EGF. We showed that injury-induced phosphorylation of specific tyrosine residues and found that a similar pattern of phosphorylation was induced by trinucleotides. These studies indicate that injury-induced purinergic receptor activation leads to phosphorylation of EGFR, ERK and migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577227PMC
http://dx.doi.org/10.1016/j.exer.2007.03.009DOI Listing

Publication Analysis

Top Keywords

phosphorylation egfr
20
egfr erk
12
phosphorylation
9
phosphorylation epidermal
8
epidermal growth
8
growth factor
8
factor receptor
8
mmp hb-egf
8
hb-egf dependent
8
dependent pathway
8

Similar Publications

The ability to identify unknown risks is the key to improving the level of food safety. However, the conventional nontargeted screening methods for new contaminant identification and risk assessment remain difficult work. Herein, a toxic-oriented screening platform based on high-expression epidermal growth factor receptor HEK293 cell membrane-coated magnetic nanoparticles (EGFR/MNPs) was first used for the discovery of unknown contaminants from food samples.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Background: Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown.

View Article and Find Full Text PDF

VISTA is a key immune checkpoint receptor under investigation for cancer immunotherapy; however, its signaling mechanisms remain unclear. Here we identify a conserved four amino acid (NPGF) intracellular motif in VISTA that suppresses cell proliferation by constraining cell-intrinsic growth receptor signaling. The NPGF motif binds to the adapter protein NUMB and recruits Rab11 endosomal recycling machinery.

View Article and Find Full Text PDF

Background: Mutations in the structural domain of the epidermal growth factor receptor (EGFR) kinase represent a critical pathogenetic factor in non-small cell lung cancer (NSCLC). Small-molecule EGFR-tyrosine kinase inhibitors (TKIs) serve as first-line therapeutic agents for the treatment of EGFR-mutated NSCLC. But the resistance mutations of EGFR restrict the clinical application of EGFR-TKIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!