Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of X-ray elemental analysis tools like energy dispersive X-ray (EDS) is described in the context of the investigation of nuclear materials. These materials contain radioactive elements, particularly alpha-decaying actinides that affect the quantitative EDS measurement by producing interferences in the X-ray spectra. These interferences originating from X-ray emission are the result of internal conversion by the daughter atoms from the alpha-decaying actinides. The strong interferences affect primarily the L X-ray lines from the actinides (in the typical energy range used for EDS analysis) and would require the use of the M lines. However, it is typically at the energy of the actinide's M lines that the interferences are dominant. The artifacts produced in the X-ray analysis are described and illustrated by some typical examples of analysis of actinide-bearing material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1431927607070365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!