In the current study we have performed experimental studies and density functional theory (DFT) modeling to investigate the selective hydrogenation of the C=O bond in acrolein on two bimetallic surface structures, the subsurface Pt-Ni-Pt(111) and surface Ni-Pt-Pt(111). We have observed for the first time the production of the desirable unsaturated alcohol (2-propenol) on Pt-Ni-Pt(111) under ultra-high vacuum conditions. Furthermore, our DFT modeling revealed a general trend in the binding energy and bonding configuration of acrolein with the surface d-band center of Pt-Ni-Pt(111), Ni-Pt-Pt(111), and Pt(111), suggesting the possibility of using the value of the surface d-band center as a parameter to predict other bimetallic surfaces for the selective hydrogenation of acrolein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja070264m | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!