A wide variety of environmental stresses can cause density-independent mortality in species populations. One example is cooling-water withdrawals, which kill or injure many aquatic organisms near power plants and other industrial facilities. In the United States alone, hundreds of facilities withdraw trillions of gallons from inland and coastal waters every year to cool turbines and other manufacturing equipment. A number of detailed, site-specific studies of the effects of such cooling-water withdrawals have been conducted over the last 30 years, but only a few generalizations have been proposed in the peer-reviewed literature. In this paper we use a series of basic theoretical models to investigate the potential effects of density-independent mortality on species populations and ecosystems, with particular focus on the effects of cooling-water withdrawals on fish populations, fisheries, and aquatic communities. Among other results, we show that the effects of cooling-water withdrawals on a species will depend on the magnitude of other co-occurring stressors, environmental variability, the nature of the management regime in the associated fisheries, and the position of the species in the food web. The general models in this paper can provide a starting point for further empirical case studies and some preliminary conceptual guidance for decision makers who must choose between alternative policy options for controlling cooling-water withdrawals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/06-0070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!