RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1.

J Cell Sci

Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.

Published: June 2007

Programs that direct cellular differentiation are dependent on the strict temporal expression of regulatory factors that can be provided by Rho GTPases. Ciliogenesis is a complex sequence of events involving the generation and docking of basal bodies at the apical membrane, followed by ciliary axoneme generation. Although a cilia proteome has been assembled, programs that direct ciliated cell differentiation are not well established, particularly in mammalian systems. Using mouse primary culture airway epithelial cells, we identified a critical stage of ciliogenesis requiring the temporal establishment of an apical web-like structure of actin for basal body docking and subsequent axoneme growth. Apical web formation and basal body docking were prevented by interruption of actin remodeling and were dependent on RhoA activation. Additional evidence for this program was provided by analysis of Foxj1-null mice that failed to dock basal bodies and lacked apical actin. Foxj1 expression coincided with actin web formation, activated RhoA and RhoB, and persisted despite RhoA inhibition, suggesting that Foxj1 promoted RhoA during ciliogenesis. Apical ezrin localization was also dependent on Foxj1, actin remodeling, and RhoA, but was not critical for ciliogenesis. Thus, temporal Foxj1 and RhoA activity are essential regulatory events for cytoskeletal remodeling during mammalian ciliogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.005306DOI Listing

Publication Analysis

Top Keywords

apical actin
8
programs direct
8
basal bodies
8
basal body
8
body docking
8
web formation
8
actin remodeling
8
actin
6
ciliogenesis
6
rhoa
6

Similar Publications

Intracellular morphological apical-basal polarity, regulated by conserved polarity proteins, plays a crucial role in cell migration and metastasis. In this study, using a genetically encoded Förster resonance energy transfer (FRET) biosensor to visually present the spatiotemporal stress state between the lipid rafts on the membrane and the linked actin, we first provide the evidence for the existence of intrinsic apical-basal stress polarity in tumor cells and demonstrate that this polarity is a prerequisite for the formation of flow-induced front-back stress polarity. Interestingly, our study revealed that the front-back stress polarity disappeared upon the disruption of intrinsic apical-basal stress discrepancy, resulting in a large attenuated cell migration activity reduced from 76.

View Article and Find Full Text PDF

Histological Changes of the Mucosal Epithelium in the Chicken Intestine during Pre- and Post-Hatching Stages.

J Poult Sci

January 2025

Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano 399-4598, Japan.

This study clarified the histological changes in the mucosal epithelium of the chicken intestine during the pre- and post-hatching stages. The duodenum, jejunum, ileum, and colorectum were collected from embryos at 15, 17, 18, 19, and 21 days of incubation and from chicks at 1 and 3 days after hatching. Paraffin sections prepared from tissue samples were stained with periodic acid-Schiff followed by alcian blue for histological analysis and to detect goblet cells.

View Article and Find Full Text PDF

Here, we report on the first part of a two-part experimental series to elucidate spatiotemporal cytoskeletal remodeling, which underpins the evolution of stem cell shape and fate, and the emergence of tissue structure and function. In Part I of these studies, we first develop protocols to stabilize microtubules exogenously using paclitaxel (PAX) in a standardized model murine embryonic stem cell line (C3H/10T1/2) to maximize comparability with previously published studies. We then probe native and microtubule-stabilized stem cells' capacity to adapt to volume changing stresses effected by seeding at increasing cell densities, which emulates local compression and tissue template formation during development.

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!