Adenylyltransferase is a bifunctional enzyme that controls the enzymatic activity of dodecameric glutamine synthetase in Escherichia coli by reversible adenylylation and deadenylylation. Previous studies showed that the two similar but chemically distinct reactions are carried out by separate domains within adenylyltransferase. The N-terminal domain carries the deadenylylation activity, and the C-terminal domain carries the adenylylation activity [Jaggi R, van Heeswijk WC, Westerhoff HV, Ollis DL & Vasudevan SG (1997) EMBO J16, 5562-5571]. In this study, we further map the domain junctions of adenylyltransferase on the basis of solubility and enzymatic analysis of truncation constructs, and show for the first time that adenylyltransferase has three domains: the two activity domains and a central, probably regulatory (R), domain connected by interdomain Q-linkers (N-Q1-R-Q2-C). The various constructs, which have the opposing domain and or central domain removed, all retain their activity in the absence of their respective nitrogen status indicator, i.e. PII or PII-UMP. A panel of mAbs to adenylyltransferase was used to demonstrate that the cellular nitrogen status indicators, PII and PII-UMP, probably bind in the central regulatory domain to stimulate the adenylylation and deadenylylation reactions, respectively. In the light of these results, intramolecular signaling within adenylyltransferase is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2007.05820.xDOI Listing

Publication Analysis

Top Keywords

central regulatory
12
regulatory domain
12
domain
8
adenylylation deadenylylation
8
domain carries
8
nitrogen status
8
pii pii-ump
8
adenylyltransferase
7
activity
5
domains
4

Similar Publications

GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.

Mol Ther

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:

CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.

View Article and Find Full Text PDF

Mitochondrial fission and fusion in neurodegenerative diseases:Ca signalling.

Mol Cell Neurosci

January 2025

Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China. Electronic address:

Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca signaling have long been considered to play important roles in the development of various NDs.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nanosized, membrane-bound structures that have emerged as promising tools for drug delivery, especially in the treatment of lysosomal storage disorders (LSDs) with central nervous system (CNS) involvement. This review highlights the unique properties of EVs, such as their biocompatibility, capacity to cross the blood-brain barrier (BBB), and potential for therapeutic cargo loading, including that of enzymes and genetic material. Current therapies for LSDs, like enzyme replacement therapy (ERT), often fail to address neurological symptoms due to their inability to cross the BBB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!