The presence of a collagenous protein (ColQ) characterizes the collagen-tailed forms of acetylcholinesterase at vertebrate neuromuscular junctions (nmjs). Two ColQ transcripts as ColQ-1 and ColQ-1a, driven by two promoters: pColQ-1 and pColQ-1a, were found in mammalian slow- and fast-twitch muscles, respectively, which have distinct expression pattern in different muscle fibers. In this study, we show the differential expression of CoQ in different muscles is triggered by calcitonin gene-related peptide (CGRP), a known motor neuron-derived factor. Application of CGRP, or dibutyryl-cAMP (Bt(2)-cAMP), in cultured myotubes induced the expression of ColQ-1a transcript and promoter activity; however, the expression of ColQ-1 transcript did not respond to CGRP or Bt(2)-cAMP. The CGRP-induced gene activation was blocked by an adenylyl cyclase inhibitor or a dominant negative mutant of cAMP-responsive element (CRE) binding protein (CREB). Two CRE sites were mapped within the ColQ-1a promoter, and mutations of the CRE sites abolished the response of CGRP or Bt(2)-cAMP. In parallel, CGRP receptor complex was dominantly expressed at the nmjs of fast muscle but not of slow muscle. These results suggested that the expression of ColQ-1a at the nmjs of fast-twitch muscle was governed by a CGRP-mediated cAMP signaling mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2007.04630.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!