Cardiac hypertrophy is regulated by a large intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cell growth. In the last few years, it has become apparent that multimolecular signaling complexes or 'signalosomes' are important for mediating crosstalk between different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPbeta serves as a scaffold for a large signalosome that is responsive to upstream cAMP, Ca(2+), and mitogen-activated protein kinase signaling. The mAKAPbeta signalosome is important for the control of NFATc transcription factor activity and for the overall induction of myocyte hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15216540701358593DOI Listing

Publication Analysis

Top Keywords

cardiac myocyte
8
myocyte hypertrophy
8
signaling pathways
8
makap signalosome
4
signalosome cardiac
4
hypertrophy cardiac
4
cardiac hypertrophy
4
hypertrophy regulated
4
regulated large
4
large intracellular
4

Similar Publications

Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1.

J Cell Mol Med

December 2024

Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice.

View Article and Find Full Text PDF

We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T89 as important in the ELA binding site, and R168 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H168 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function.

View Article and Find Full Text PDF

Spotlight on YAP: Unlocking New Insights to Overcome the Barriers to Heart Regeneration.

Circulation

January 2025

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.V., R.T.L.).

This editorial refers to “Microtubules Sequester Acetylated YAP in the Cytoplasm and Inhibit Heart Regeneration” by Liu . and “YAP Overcomes Mechanical Barriers to Induce Mitotic Rounding and Adult Cardiomyocyte Division” by Morikawa

View Article and Find Full Text PDF

Retinoic acid signaling pathway plays a role in regulating vertebrate development, cell differentiation, and homeostasis. As a key enzyme that catalyzes the oxidation of retinal to retinoic acid, aldehyde dehydrogenase 1 family member A2 (Aldh1a2) is involved in cardiac development, while whether it functions in heart diseases remains to be studied. In this study, we infected primary cardiomyocytes with adenovirus overexpressing (Ad-Aldh1a2) to explore the effects of overexpression on the biological function of cardiomyocytes.

View Article and Find Full Text PDF

Conventional two-dimensional (2D) cardiomyocyte differentiation protocols create cells with limited maturity, which impairs their predictive capacity and has driven interest in three-dimensional (3D) engineered cardiac tissue models of varying maturity and scalability. Cardiac spheroids are attractive high-throughput models that have demonstrated improved functional and transcriptional maturity over conventional 2D differentiations. However, these 3D models still tend to have limited contractile and electrical maturity compared to highly engineered cardiac tissues; hence, we incorporated a library of conductive polymer microfibers in cardiac spheroids to determine if fiber properties could accelerate maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!