We previously identified GADD34 (growth arrest and DNA damage protein 34) by screening for genes involved in oncogenic-transformation and/or cellular senescence in Ras-transformed rat F2408 fibroblasts (7EJ-Ras), which exhibit anchorage-independent growth and do not senesce. In the current study, we found that transduction of 7EJ-Ras cells with a retroviral vector expressing GADD34 suppressed their proliferation. Furthermore, we observed that fibroblasts derived from GADD34-knockout mice (GADD34-KO MEFs) did not undergo senescence. Whereas the expression of p21 was decreased in GADD34 KO MEFs, its expression was rescued in these cells by ectopic expression of GADD34 by retroviral transduction. These findings suggest that GADD34 contributes to the regulation of p21 expression, and that it suppresses cellular proliferation through the induction of cellular senescence.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cellular senescence
12
p21 expression
8
gadd34
6
expression
5
gadd34 induces
4
induces p21
4
cellular
4
expression cellular
4
senescence
4
senescence identified
4

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells.

Cell Metab

January 2025

Henan Academy of Sciences, Zhengzhou 450000, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Cellular senescence, a hallmark of aging, involves a stable exit from the cell cycle. Senescent cells (SnCs) are closely associated with aging and aging-related disorders, making them potential targets for anti-aging interventions. In this study, we demonstrated that human embryonic stem cell-derived exosomes (hESC-Exos) reversed senescence by restoring the proliferative capacity of SnCs in vitro.

View Article and Find Full Text PDF

A review of effects of electromagnetic fields on ageing and ageing dependent bioeffects of electromagnetic fields.

Sci Total Environ

January 2025

Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 310030, Hangzhou, China. Electronic address:

Thanks to the progress of science and technology, human life expectancy has dramatically increased in the past few decades, but accompanied by rapid ageing of population, resulting in increased burden on society. At the same time, the living environment, especially the electromagnetic environment, has also greatly changed due to science and technology advances. The effect of artificial electromagnetic fields (EMFs) emitted from power lines, mobile phones, wireless equipment, and other devices on ageing and ageing-related diseases are receiving increasing attention.

View Article and Find Full Text PDF

In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!