Background: Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system. Clinical trials have demonstrated that mature DCs loaded with tumor-associated antigens can induce tumor-specific immune responses. Theoretically, pediatric patients are excellent candidates for immunotherapy since their immune system is more potent compared to adults. We studied whether sufficient amounts of mature monocyte-derived DCs can be cultured from peripheral blood of pediatric cancer patients.

Procedure: DCs from 15 pediatric patients with an untreated primary tumor were cultured from monocytes and matured with clinical grade cytokines. Phenotype and function were tested with flow cytometry, mixed lymphocyte reaction (MLR), and an in vitro migration assay. DCs of children with a solid tumor were compared with monocyte-derived DCs from age-related non-malignant controls.

Results: Ex vivo-generated monocyte-derived DCs from pediatric patients can be generated in numbers sufficient for DC vaccination trials. Upon cytokine stimulation the DCs highly upregulate the expression of the maturation markers CD80, CD83, and CD86. The mature DCs are six times more potent in inducing T cell proliferation compared to immature DCs. Furthermore, mature DCs, but not immature DCs, express the chemokine receptor CCR7 and have the capacity to migrate in vitro.

Conclusions: These data indicate that mature DCs can be generated ex vivo to further optimize DC-vaccination trials in pediatric cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pbc.21246DOI Listing

Publication Analysis

Top Keywords

mature dcs
16
dcs
13
pediatric cancer
12
pediatric patients
12
monocyte-derived dcs
12
dendritic cells
8
cancer patients
8
immune system
8
dcs pediatric
8
immature dcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!