Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells.

J Cell Biochem

Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA.

Published: July 2007

AI Article Synopsis

  • FPN-1 (ferroportin-1) and Heph (hephaestin) are proteins involved in iron export from intestinal cells, specifically located on the basolateral membrane of enterocytes.
  • Their precise location within intestinal cells was studied using Caco-2 cells, revealing that they are associated with the transferrin receptor and primarily found in fully differentiated cells, not in proliferating cells.
  • The study suggests that FPN-1 may interact with Heph to facilitate iron transport out of intestinal absorptive cells.

Article Abstract

An iron exporter ferroportin-1 (FPN-1) and a multi-copper oxidase hephaestin (Heph) are predicted to be expressed on the basolateral membrane of the enterocyte and involved in the processes of iron export across the basolateral membrane of the enterocyte. However, it is not clear where these proteins are exactly located in the intestinal absorptive cell. We examined cellular localization of FPN-1 and Heph in the intestinal absorptive cells using the fully differentiated Caco-2 cells. Confocal microscope study showed that FPN-1 and Heph are located on the basolateral membrane and they are associated with the transferrin receptor (TfR) in fully differentiated Caco-2 cells grown on microporous membrane inserts. However, Heph protein was not detected in the crypt cell-like proliferating Caco-2 cell. In stably transfected human intestinal absorptive cells expressing human FPN-1 modified by the addition of GFP at the C-terminus, we show that FPN-1-GFP is located on the basolateral membrane and it is associated with Heph suggesting the possibility that FPN-1 might associate and interact with Heph in the process of iron exit across the basolateral membrane of intestinal absorptive cell.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.21392DOI Listing

Publication Analysis

Top Keywords

basolateral membrane
24
intestinal absorptive
20
absorptive cells
12
human intestinal
8
membrane enterocyte
8
absorptive cell
8
fpn-1 heph
8
fully differentiated
8
differentiated caco-2
8
caco-2 cells
8

Similar Publications

Despite the importance of ocular surface in human physiology and diseases, little is known about ion channel expression, properties and regulation in ocular epithelial cells. Furthermore, human primary epithelial cells have rarely been studied in favor of rat, mouse and especially rabbit animal models. Here, we developed primary human Meibomian gland (hMGEC) and conjunctival (hConEC) epithelial cells.

View Article and Find Full Text PDF

Autosomal recessive proximal renal tubular acidosis (AR-pRTA) with ocular abnormalities is a rare syndrome caused by variants in the SLC4A4 gene, which encodes Na/HCO3 cotransporter (NBCe1). The syndrome primarily affects the kidneys, but also causes extra-renal manifestations. Pancreatic type NBCe1 is located at the basolateral membrane of the pancreatic ductal cells and together with CFTR chloride channel, it is involved in bicarbonate secretion.

View Article and Find Full Text PDF

Introduction: Breast cancer resistance protein (BCRP) is an efflux membrane transporter that controls the pharmacokinetics of a large number of drugs. Its activity may change when taking some endo- and exogenous substances, thus making it a link in drug interactions.

Aim: The aim of the study was to develop a methodology for testing drugs for belonging to BCRP substrates and inhibitors in vitro.

View Article and Find Full Text PDF

Plastic nanoparticle toxicity is accentuated in the immune-competent inflamed intestinal tri-culture cell model.

Nanotoxicology

January 2025

Department of Pharmaceutical Sciences & Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, Portland, Maine, USA.

Important cell-based models of intestinal inflammation have been advanced in hopes of predicting the impact of nanoparticles on disease. We sought to determine whether a high level and extended exposure of nanoplastic might result in the added intestinal inflammation caused by nanoplastic reported in a mouse model of irritable bowel disease. The cell models consist of a Transwell©-type insert with a filter membrane upon which lies a biculture monolayer of Caco-2 and HT29-MTX-E12 made up the barrier cells (apical compartment).

View Article and Find Full Text PDF

Study on the absorption characteristics of euscaphic acid and tiliroside in fruits of Retz.

PeerJ

January 2025

Chinese University of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.

The fruits of Retz. (FRL) have a long history of medicinal use, known for their rich composition of flavonoids, polyphenols, amino acids, sugars, and other bioactive compounds. FRL exhibits pharmacological effects such as antioxidant, antiviral, antibacterial, and antitumor activities, making it a valuable resource with significant development potential in both the food and pharmaceutical industries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!