Role of respiration in the germination process of the pathogenic mold Aspergillus fumigatus.

Curr Microbiol

Max-von-Pettenkofer-Institut, Ludwig-Maximilians-Universität, Pettenkoferstr. 9a, D-80336, Munich, Germany.

Published: May 2007

Inhalation of resting conidia is usually the first step of a systemic infection caused by the opportunistic fungal pathogen Aspergillus fumigatus. In the lung, the inhaled spores encounter an environment that permits germination. However, the relative importance of certain environmental conditions for conidial activation and subsequent hyphae formation has so far not been analyzed in detail. In this study, we studied the role of oxygen during germination. We found that inhibitors of the respiratory chain were nearly as efficient in blocking germination as cycloheximide, an inhibitor of protein synthesis, which is already known to prevent germination of Aspergillus nidulans. We also found that A. fumigatus is unable to grow or germinate under anaerobic conditions, and using the fluorescent mitotracker dye we detected active mitochondria already at the stage of swollen conidia, which indicates that respiration is an early event during germination. In line with these data, we found that significant oxygen consumption was detectable early during germination, whereas no oxygen consumption was measurable in suspensions of resting conidia. In summary, the present study provides evidence that respiration is absolutely required for the germination of A. fumigatus conidia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-006-0413-yDOI Listing

Publication Analysis

Top Keywords

germination
8
aspergillus fumigatus
8
resting conidia
8
oxygen consumption
8
role respiration
4
respiration germination
4
germination process
4
process pathogenic
4
pathogenic mold
4
mold aspergillus
4

Similar Publications

Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.

View Article and Find Full Text PDF

Speed breeding advancements in safflower ( L.): a simplified and efficient approach for accelerating breeding programs.

Mol Breed

January 2025

Department of Agricultural Biotechnology, Genome and Stem Cell Center, Erciyes University, Kayseri, 38280 Türkiye.

This study investigated the potential of extended irradiation combined with immature embryo culture techniques to accelerate generation advancements in safflower ( L.) breeding programs. We developed an efficient speed breeding method by applying light-emitting diodes (LEDs) that emit specific wavelengths, alongside the in vitro germination of immature embryos under controlled environmental conditions.

View Article and Find Full Text PDF

Parasitic plants are a diverse and unique polyphyletic assemblage of flowering plants that survive by obtaining resources via direct vascular connections to a host plant. Ecologically important in their native ecosystems, these typically cryptic plants remain understudied and fundamental knowledge of the biology, ecology, and evolution of most species is lacking. This gap limits our understanding of ecosystems and conservation management.

View Article and Find Full Text PDF

The continuous contamination of heavy metals (HMs) in our ecosystem due to industrialization, urbanization and other anthropogenic activities has become a serious environmental constraint to successful crop production. Lead (Pb) toxicity causes ionic, oxidative and osmotic injuries which induce various morphological, physiological, metabolic and molecular abnormalities in plants. Polyethylene glycol (PEG) is widely used to elucidate drought stress induction and alleviation mechanisms in treated plants.

View Article and Find Full Text PDF

Until recently, the lack of three-dimensional visualisation of whole cells at the electron microscopic (EM) level has led to a significant gap in our understanding of the interaction of cellular organelles and their interconnection. This is particularly true with regard to the role of the endoplasmic reticulum (ER). In this study, we perform three-dimensional reconstructions of serial FIB/SEM stacks and anaglyphs derived from volume rendering, cryo-scanning electron microscopy (cryo-SEM) and state-of-the-art electron microscopy immobilisation and imaging techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!