Unlike the mechanisms involved in the death of neuronal cell bodies, those causing the elimination of processes are not well understood owing to the lack of suitable experimental systems. As the neurotrophin receptor p75(NTR) is known to restrict the growth of neuronal processes, we engineered mouse embryonic stem (ES) cells to express an Ngfr (p75(NTR)) cDNA under the control of the Mapt locus (the gene encoding tau), which begins to be active when ES cell-derived progenitors start elongating processes. This caused a progressive, synchronous degeneration of all processes, and a prospective proteomic analysis showed increased levels of the sugar-binding protein galectin-1 in the p75(NTR)-engineered cells. Function-blocking galectin-1 antibodies prevented the degeneration of processes, and recombinant galectin-1 caused the processes of wild-type neurons to degenerate first, followed by the cell bodies. In vivo, the application of a glutamate receptor agonist, a maneuver known to upregulate p75(NTR), led to an increase in the amount of galectin-1 and to the degeneration of neurons and their processes in a galectin-1-dependent fashion. Section of the sciatic nerve also rapidly upregulated levels of p75(NTR) and galectin-1 in terminal Schwann cells, and the elimination of nerve endings was delayed at the neuromuscular junction of mice lacking Lgals1 (the gene encoding galectin-1). These results indicate that galectin-1 actively participates in the elimination of neuronal processes after lesion, and that engineered ES cells are a useful tool for studying relevant aspects of neuronal degeneration that have been hitherto difficult to analyze.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1897DOI Listing

Publication Analysis

Top Keywords

neuronal processes
12
processes
9
processes engineered
8
embryonic stem
8
stem cells
8
cell bodies
8
gene encoding
8
degeneration processes
8
galectin-1
7
degeneration
5

Similar Publications

For most researchers, academic publishing serves two goals that are often misaligned-knowledge dissemination and establishing scientific credentials. While both goals can encourage research with significant depth and scope, the latter can also pressure scholars to maximize publication metrics. Commercial publishing companies have capitalized on the centrality of publishing to the scientific enterprises of knowledge dissemination and academic recognition to extract large profits from academia by leveraging unpaid services from reviewers, creating financial barriers to research dissemination, and imposing substantial fees for open access.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh).

View Article and Find Full Text PDF

The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!