The objective of this study was to evaluate the usefulness of laser Doppler imaging (LDPI) of the skin blood flow for assessing peripheral vascular impairment in the hand-arm vibration syndrome (HAVS). The subjects were 46 male patients with HAVS, aged 50 to 69 yr, and 31 healthy male volunteers of similar age as controls. A cold provocation test was carried out by immersing a subject's hand on his more severely affected side into cold water at a temperature of 10 degrees C for 10 min. Repeated image scanning of skin blood flow of the index, middle, and ring fingers was performed every 2 min before, during, and after the cold water immersion using a PMI-II laser Doppler perfusion imager. The mean blood perfusion values in the distal phalanx area of the fingers were calculated on each image. The patients suffering from vibration-induced white finger (VWF, n=20) demonstrated significantly lower skin blood perfusion at each interval of the test as compared with those without VWF (n=26) and the controls (p<0.01, ANOVA). The blood perfusions in the HAVS patients were associated with the severity of the symptoms as classified by the Stockholm Workshop scale for vascular staging. When a subject was considered to be positive if any of the tested fingers showing a decreased blood perfusion and/or a delayed recovery pattern, the sensitivity was 80.0%, and the specificity was 84.6% and 93.5% for patients without VWF and the controls, respectively. These results suggest that the LDPI technique could provide detailed and accurate information that may help detect the existence of impaired vascular regulation to cold exposure in the fingers of workers exposed to hand-transmitted vibration.

Download full-text PDF

Source
http://dx.doi.org/10.2486/indhealth.45.309DOI Listing

Publication Analysis

Top Keywords

skin blood
16
laser doppler
12
blood flow
12
doppler imaging
8
flow assessing
8
assessing peripheral
8
peripheral vascular
8
vascular impairment
8
impairment hand-arm
8
hand-arm vibration
8

Similar Publications

Pocket hematoma is a common and serious complication following cardiac implantable electronic device (CIED) implantation, contributing to significant morbidity and mortality. This study aimed to evaluate the efficacy of a novel pocket compression device in reducing pocket hematoma occurrence. We enrolled 242 patients undergoing CIED implantation, randomly assigning them to receive either the novel compression vest with a pressure cuff or conventional sandbag compression.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Objective: Metabolic reprogramming plays a critical role in modulating the innate and adaptive immune response, but its role in cutaneous autoimmune diseases, such as cutaneous lupus erythematosus (CLE), is less well studied. An improved understanding of the metabolic pathways dysregulated in CLE may lead to novel treatment options, biomarkers and insights into disease pathogenesis. The objective was to compare metabolomic profiles in the skin and sera of CLE and control patients using liquid chromatography-mass spectrometry (LC-MS).

View Article and Find Full Text PDF

Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood and tissue compartments in the presence of interstitial flow. The drug's reversible specific saturable binding to its receptors and the kinetics of reversible absorption across the blood and tissue compartments have been taken into account.

View Article and Find Full Text PDF

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!