Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L(-1)) was higher than in tile-drain water (6.5 mg DOC L(-1)). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L(-1)) than under corn (5.4 mg DOC L(-1)) even though the application rates of LHM were higher in corn plots. We suggest that preferential flow facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface runoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2006.0355DOI Listing

Publication Analysis

Top Keywords

tile-drain water
24
doc
17
doc l-1
16
runoff tile-drain
12
doc concentration
12
runoff water
12
corn residues
12
water
9
dissolved organic
8
organic carbon
8

Similar Publications

Agricultural phosphorus (P) losses are harmful to water quality, but knowledge gaps about the importance of fertilizer management practices on new (recently applied) sources of P may limit P loss mitigation efforts. Weighted regression models applied to subsurface tile drainage water quality data enabled estimating the new P losses associated with 155 P applications in Ohio and Indiana, USA. Daily discharge and dissolved reactive P (DRP) and total P (TP) loads were used to detect increases in P loss following each application which was considered new P.

View Article and Find Full Text PDF

Subsurface tile drains under agricultural field crops are a major source of phosphorus (P) discharge to aquatic ecosystems, contributing to the eutrophication of surface waters. Adsorption reactors for P removal from drainage water (P-reactors) could reduce P outflow from agricultural land but were rarely studied in cold, temperate climates. In our study, four low-cost P-reactors were installed in agricultural fields in south-central Québec, Canada.

View Article and Find Full Text PDF

Lake Erie is the most at risk of the Great Lakes for degraded water quality due to non-point source pollution caused by agricultural activities in the lake's watershed. The extent and temporal patterns of nutrient loading from these agricultural activities is influenced by the timing of agronomic events, precipitation events, and water flow through areas of natural filtration within the watershed. Downstream impacts of these nutrient loading events may be moderated by the co-loading of functionally relevant biogeochemical cycling microbial communities from agricultural soils.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the extent of subsurface drainage (tile-drain) is crucial for analyzing landscape responses to rainfall and soil management impacts on stream health and water quality.
  • A UNet machine-learning model was developed to detect tile-drain networks in satellite images without needing detailed data on soil or terrain, achieving high accuracy similar to expert manual tracing.
  • The model performed best in spring conditions, identifying tile drains with 93%-96% accuracy, thus helping to manage nutrient and sediment flow which is essential for addressing issues like harmful algal blooms.
View Article and Find Full Text PDF

Subsurface losses of colloidal and truly dissolved phosphorus (P) from arable land can cause ecological damage to surface water. To gain deeper knowledge about subsurface particulate P transport from inland sources to brooks, we studied an artificially drained lowland catchment (1550 ha) in north-eastern Germany. We took daily samples during the winter discharge period 2019/2020 at different locations, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!