Although biological cells are mostly transparent, they are phase objects that differ in shape and refractive index. Any image that is projected through layers of randomly oriented cells will normally be distorted by refraction, reflection, and scattering. Counterintuitively, the retina of the vertebrate eye is inverted with respect to its optical function and light must pass through several tissue layers before reaching the light-detecting photoreceptor cells. Here we report on the specific optical properties of glial cells present in the retina, which might contribute to optimize this apparently unfavorable situation. We investigated intact retinal tissue and individual Müller cells, which are radial glial cells spanning the entire retinal thickness. Müller cells have an extended funnel shape, a higher refractive index than their surrounding tissue, and are oriented along the direction of light propagation. Transmission and reflection confocal microscopy of retinal tissue in vitro and in vivo showed that these cells provide a low-scattering passage for light from the retinal surface to the photoreceptor cells. Using a modified dual-beam laser trap we could also demonstrate that individual Müller cells act as optical fibers. Furthermore, their parallel array in the retina is reminiscent of fiberoptic plates used for low-distortion image transfer. Thus, Müller cells seem to mediate the image transfer through the vertebrate retina with minimal distortion and low loss. This finding elucidates a fundamental feature of the inverted retina as an optical system and ascribes a new function to glial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895942 | PMC |
http://dx.doi.org/10.1073/pnas.0611180104 | DOI Listing |
Arch Med Res
July 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain.
Chronic inflammatory liver disease with an acute deterioration of liver function is named acute-on-chronic inflammation and could be regulated by the metabolic impairments related to the liver dysfunction. In this way, the experimental cholestasis model is excellent for studying metabolism in both types of inflammatory responses. Along the evolution of this model, the rats develop biliary fibrosis and an acute-on-chronic decompensation.
View Article and Find Full Text PDFCells
June 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
Portal hypertension is a common complication of liver disease, either acute or chronic. Consequently, in chronic liver disease, such as the hypertensive mesenteric venous pathology, the coexisting inflammatory response is classically characterized by the splanchnic blood circulation. However, a vascular lymphatic pathology is produced simultaneously with the splanchnic arterio-venous impairments.
View Article and Find Full Text PDFClin Res Hepatol Gastroenterol
October 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain. Electronic address:
Introduction: Splanchnic mast cells increase in chronic liver and in acute-on-chronic liver diseases. We administered Ketotifen, a mast cell stabilizer, and measured the mast cells in the splanchnic organs of cholestatic rats.
Material And Methods: These groups were studied: sham-operated rats (S; n = 15), untreated microsurgical cholestasic rats (C; n = 20) and rats treated with Ketotifen: early (SK-e; n = 20 and CKe; n = 18), and late (SK-l; n = 15 and CK-l; n = 14).
Inflamm Res
February 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.
Background: In mammals, inflammation is required for wound repair and tumorigenesis. However, the events that lead to inflammation, particularly in non-healing wounds and cancer, are only partly understood.
Findings: Mast cells, due to their great plasticity, could orchestrate the inflammatory responses inducing the expression of extraembryonic programs of normal and pathological tissue formation.
Inflamm Res
February 2018
Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.
The inflammatory response expressed after wound healing would be the recapitulation of systemic extra-embryonic functions, which would focus on the interstitium of the injured tissue. In the injured tissue, mast cells, provided for a great functional heterogeneity, could play the leading role in the re-expression of extra-embryonic functions, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!